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Abstract
We use a lattice model to study first-passage time distributions of target finding events through
complex environments with elongated fibers distributed with different anisotropies and volume
occupation fractions. For isotropic systems and for low densities of aligned fibers, the
three-dimensional search is a Poisson process with the first-passage time exponentially distributed
with the most probable finding time at zero. At high enough densities of aligned fibers, elongated
channels emerge, reducing the dynamics dimensionality to one dimension. We show how the
shape and size of the channels modify the behavior of the first-passage time distribution and its
short, intermediate, and long time scales. We develop an exactly solvable model for synthetic
rectangular channels, which captures the effects of the tortuous local structure of the elongated
channels that naturally emerge in our system. For arbitrary values of the nematic order parameter
of fiber orientations, we develop a mapping to the simpler situation of fully aligned fibers at some
other effective volume occupation fraction. Our results shed light on the molecular transport of
biomolecules between biological cells in complex fibrous environments.

1. Introduction

Many biochemical reactions between chemically active molecules involve molecules distant in space, and
commonly, at least one molecular species is free and searches for its target molecule. Thus, biochemical
reactions depend on how a molecule diffuses toward its target, and also on the probability associated with
the molecules to react once they are in close contact [1–3]. The former process depends on the reactant’s
diffusion coefficient D and the shape and size of the confining region. The latter process depends on an
intrinsic reactivity k. Under ideal conditions, reactants in high concentrations are uniformly distributed in
space, leading to uniform and independent encounters between molecules. Consequently, diffusion and
kinetic controls are each correctly described by a single time-scale, and in particular, the mean reaction time
is given as the sum of two time-scales: the mean time for molecular encounter ∼ 1/D, and the mean time
for chemical reaction ∼ 1/k [4–6]. In recent years it has become more evident that it is necessary to
question this simplified description of biochemical reactions and consider more elaborate models. In
particular, for many biochemical reactions, the number of reactants can be low, limited to a few copies [7].
For example, gene expression and gene regulation occur at low-copy protein numbers, and their stochastic
behavior has been the focus of many studies [8–11]. Another example is the sensory systems used by
swimming bacteria responding to the activation–deactivation of membrane receptors by a limited amount
of molecules [12–14]. In these cases, it is no longer appropriate to describe reaction rates with the mean
time for a molecular encounter or the mean first-passage time (MFPT), but one needs to know the whole
distribution of first-passage times (FPTs). It becomes then clear that at low molecular concentrations, the
MFPT is not the only relevant time scale of the reaction process, but the most-probable FPT (MPFPT)
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Figure 1. (A) Schematic representation of our lattice model. (B) Fiber density modulates the diffusion coefficient. The ratio
D(φ)/D0 decreases as a function of φ. Inset: log–log plot of D(φ)/D0 × (1 − φ) as a function of (1 − φ/φC). For S = 1, we
consider only diffusion along the x–z plane. Therefore we remove a value of 1/3, which accounts to the contribution in the
diffusion coefficient along the y axis.

becomes essential too. Hence, different diffusive-controlled events in the same system can vary widely in
their time scales since the MPFPT, and the MFPT can differ by orders of magnitude [15, 16]. Knowledge of
the whole distribution is needed also to determine the record statistics [17–19], the statistics of
multi-particle systems [20–26], and to identify intermediate states in transition networks [27, 28].

Moreover, biological systems typically encompass complex environments in which molecules with
different shapes, sizes, and chemical compositions coexist [29–31]. The crowded nature of biological
systems has motivated great efforts to understand its effects on enzymatic activity, protein folding, and gene
regulation [32–36]. Additionally, in highly dynamical environments such as the extracellular matrix (ECM)
of living tissues, the geometric structure is continuously remodeled by cellular activities such as traction
forces, degradation, or secretion of ECM fibers [37–47]. Such ECM remodeling modulates the fiber volume
occupation fraction and the anisotropy of the fibers. These, in turn, can dramatically affect the diffusion of
molecules through the matrix [47–56].

We have recently shown that increased density and alignment of fibers facilitate molecular transport
from a source to a target, which may support long-range cell–cell biochemical interactions [56]. In our 3D
lattice model (see figure 1(A)), we consider random walks of a diffusing molecule searching for its target
within a system with fixed elongated fibers distributed with a nematic order parameter S and taking up a
volume fraction φ. Only excluded volume interactions are considered. As the density of fibers increases, the
system percolates differently depending on the alignment: for isotropic fibers (S = 0), the system undergoes
a drilling percolation transition at φ3D

C = 0.75 [57–59]. At fiber occupation fractions of φ � φ3D
C , the

molecule gets caged by fibers, impeding target finding. Whereas for aligned fibers (S = 1), the system
follows a 2D random site percolation process in the cross section of fiber positioning, with a critical fiber
density of φ2D

C = 0.408 [60]. As φ reaches φ2D
C , the components of the diffusion coefficient perpendicular to

fiber alignment decay to zero while the parallel component remains unaffected. This effect on the diffusion
coefficient results from the emergence of channel-like structures that confine the dynamics to a 1D process,
which is more effective than the 3D case. This caged state of the dynamics can be modulated toward the 1D
process by continuously increasing fiber alignment S and fiber volume fraction φ.

In this paper, we study the effect of channel shape and size on the FPT probability density, the MFPT,
and the MPFPT of a target-finding process by numerical simulations and by analytically solving for several
simplified geometries of channels with square and rectangular cross sections. We show that the channel size
as well as its fractal shape influence the FPT probability density. Additionally, we show that the FPT
probability density is no longer characterized by a single time-scale, implying that the typical notion of
describing molecular reactions as the sum of two MFPTs (1/D and 1/k) is not appropriate. We also
consider intermediate fiber alignment values, between the isotropic to the fully aligned. Interestingly, we
construct a mapping between this more complex case to the simpler case described above of fully aligned
fibers, and find that this mapping is effective in describing both the MFPT and the FPT probability density.

The paper is organized as follows: in section 2, we introduce our model. In section 3, we study the FPT
problem in the free case (φ = 0) and in the low fiber volume occupation fraction regime, both for aligned
(S = 1) and for isotropic (S = 0) fiber distributions. Next, in section 4 we consider the very high volume
occupation fraction limit (φ ≈ 1) of aligned fibers (S = 1), such that the dynamics are entirely 1D. Then, in
section 5 we consider high densities (φ > φ2D

C ) of aligned (S = 1) fibers and study the FPT in elongated
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channels with different shapes and sizes: we numerically analyze the FPT probability densities that occur in
the disordered channels that naturally emerge in our system of aligned fibers, and we approximate these
complex channels with synthetic square and rectangular channels that allow us to study the FPT probability
density analytically. In section 6, we study the FPT problem for intermediate alignment 0 < S < 1, and map
these more general cases to our results for perfectly aligned fibers (S = 1), both above and below the
percolation threshold. Finally, section 7 concludes with a summary and discussion of our work and its
implications.

2. Computational model

We study transport in complex environments using a model of particles moving on a 3D simple cubic
lattice with periodic boundary conditions in all directions. The lattice is set with a total volume of
V = L x × L y × L z sites, and three types of molecules can occupy the different lattice sites: a tracer
molecule that is released from a source located at r0 = (x0, y0, z0), with x0 = �L x/2�, y0 =

⌊
L y/4

⌋
,

z0 = �L z/2�, a static target placed at rT = (xT, yT, zT), with xT = �L x/2�, yT = 3
⌊
L y/4

⌋
, zT = �L z/2�,

and elongated fibers, each one running along one of the three principal directions of the lattice and that
span the whole system length, see figure 1(A). We consider fibers with thickness of one lattice site and allow
them to cross each other. Each fiber has a probability pi of being oriented along the i = x, y, z axis. We
calibrate the probabilities pi to obtain a desired nematic order parameter of the system
S = (3〈cos2 θ〉 − 1)/2, with θ the angle between the fiber orientation and the preferred direction of
orientation [61], which we choose to be the y-axis. Note that the preferred direction of fiber orientation and
the line connecting the source and target are the same. The motivation for this choice is that cells stretch the
matrix and cause fibers to orient along the direction between the cells [56]. Therefore, we set px to be equal
to pz, thus S = (3py − 1)/2, and px = pz = (1 − py)/2. A system with S = 0 has fibers isotropically
distributed, with px = py = pz = 1/3, and one with S = 1 has all the fibers aligned along the y-axis, i.e.,
px = pz = 0 and py = 1. Thus, for a system with given values of S and of the total volume fraction

φ = 1 −
[
1 − Mpx/(L yL z)

] [
1 − Mpy/(L xL z)

] [
1 − Mpz/(L xL y)

]
, we compute the total number of

fibers M, and distribute them in the lattice with probabilities pi. The FPT is defined as the time needed for
the tracer molecule to reach the target site for the first time. After every finding event, the tracer is placed
back to the source location, and then, a new random configuration of fibers is generated, and a new target
search process begins.

When an exponentially distributed clock with mean 1 ticks, the molecule advances to one of its six
neighboring sites, provided the desired location is empty of fibers. Otherwise, the move is rejected. Whether
the molecule moved or not, the clock resets. In the simulations, the molecule attempts to move at constant
time steps. The difference between the described model and the simulation results appear only at very short
times, which are not analyzed here.

For the case φ = 0, with no fibers, the molecule moves in an empty lattice and diffuses with a diffusion
coefficient D0 = 1/6. As the volume occupation fraction increases toward the percolation threshold φC, the
diffusion coefficient decays algebraically as predicted by percolation theory [60]. Hence, to describe the
complex behavior of the diffusion coefficient one needs the critical density φC and the exponent μ, which
controls this algebraic decay [62]. In the isotropic (S = 0) case, diffusion is equally hindered in all
directions and the diffusion coefficient decays following the Swiss-cheese model [62], as:

D(φ)

D0
=

(
1 − φ

φ3D
C

)μ0

(1 − φ)
. (1)

Using the critical density for drilling percolation φ3D
C = 0.75, we obtain μ0 = 2, agreeing with the value

reported in [60], see figure 1(B). For aligned fibers (S = 1), diffusion is not affected along the y axis, but is
hindered along the x–z cross section. Thus, we decouple the effect of fibers in the components of the
diffusion coefficient, and see that it decays as:

D(φ)

D0
=

1

3
+

2

3
×

(
1 − φ

φ2D
C

)μ1

(1 − φ)
, (2)

with the critical density for 2D random site percolation φ2D
C = 0.408 [60]. We get that for our system

μ1 = 1.3, in agreement with the value reported in [60], see figure 1(B), where we plot D(φ) and its algebraic
scaling for S = 0 and for S = 1.
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Figure 2. MFPT as a function of nematic order parameter S with diagonal (blue triangles) and straight (green circles) fibers at a
fiber volume occupation fraction of φ = 0.61. Inset: schematic of diagonal (blue) and straight (green) fibers running across the
x–z plane. Statistics are performed with 2 · 104 finding events for diagonal fibers and with 104 for straight fibers.

Our discrete lattice model imposes limitations on fiber geometry, and the results obtained for it clearly
differ from those for models with continuous positions and orientations of fibers. To get a sense of the effect
of the discrete possible orientations that fibers can take in our model, we extend our model to allow fibers
to also run in the main diagonal directions of the lattice. We compute the MFPT with and without diagonal
fibers at different values of the nematic order parameter S and at a fixed value of the fiber volume
occupation fraction. Figure 2 presents the very good agreement between the two setups. Thus, for the
remainder of our work, we exclude diagonal fibers and obtain intermediate values 0 < S < 1 of the nematic
order parameter of fiber orientations only by changing the fractions px, py and pz of fibers along the three
principal directions of the lattice.

3. 3D searching

We start by considering the reference case of target finding without fibers (φ = 0). This system with
periodic boundary conditions allows us to solve the FPT probability density, based on the evolution
equation for the probability P(r, t) of the particle to be at position r = (x, y, z) at time t given that it has not
reached the target yet. The FPT probability density F(rT, t) of finding the target located at rT at time t, given
that the molecule started at r0 at t = 0, is related to P(r, t) by [63]:

P (rT, t) =

∫ t

0
P

(
r0, t − t′

)
F

(
rT, t′

)
dt′. (3)

The right-hand side of equation (3) is the probability of reaching rT for the first time, given that at any
previous time t − t′ the molecule was at r0 and has not yet visited the site rT. After taking the Laplace
transform of both sides, we get the relation:

F̃ (rT, s) =
P̃ (rT, s)

P̃ (r0, s)
. (4)

By separation of variables, P (r, t) = PX (x, t) PY

(
y, t

)
PZ (z, t), we obtain the independent probabilities

PJ(j, t), and find that the MFPT scales with the system’s volume [64–68], see appendix A:

〈t〉 = α0V

2D0
, (5)

where [64]

α0 =

∫ 1

0

∫ 1

0

∫ 1

0

dx dy dz

Ω0(x, y, z)
≈ 0.505 (6)

is a geometrical prefactor, and Ω0

(
x, y, z

)
= ω (πx) + ω (πz) + ω

(
2πy

)
with the function

ω(ψ) = (1 − cosψ)/3. Here, the periodic boundary conditions ensure that over long times, the tracer
molecule is equally likely to be at any lattice site in the system, making the finding events a Poisson process,
with an exponential FPT probability density F(t) = 1/ 〈t〉 × exp

(
−t/ 〈t〉

)
[69]. To test the theoretical

prediction of equation (5), we plot in figure 3(A) the MFPT for two system sizes with
L x = L y = L z = 100 (black dashed line) and L x = L y = L z = 96 (red diamond). We recover the
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Figure 3. MFPT and FPT probability densities for target finding for different values of S and φ. (A) MFPT as a function of the
available volume for S = 0 and S = 1. In the free case φ = 0, the MFPT increases with the volume. For low φ, the MFPT is given
by equation (9) (green line). Inset: the target finding dynamics strongly changes as φ approaches φ2D

C (blue line) and φ3D
C (orange

line), for S = 1 and S = 0, respectively. (B) Normalized FPT probability density for S = 0 and S = 1 for values of φ � φ3D
C and

φ � φ2D
C , respectively. Black dashed line shows exponential behavior. (C) Normalized FPT probability densities for aligned fibers

and values of φ > φ2D
C . The red line is equation (12) for the 1D FPT probability density. Statistics are performed for 2 × 105

finding events.

MFPT dependence on the system’s volume and the free diffusion coefficient D0, as shown by the green
dashed line with φ = 0.

Next, we examine the case of low values of fiber occupation fraction φ and their effect on the MFPT. The
introduction of fibers has two competing effects on the MFPT. On the one hand, as φ increases, the
available volume decreases, reducing the MFPT for target finding. On the other hand, the presence of fibers
hinders diffusion, thus increasing the time needed for the tracer to find its target. It is conjectured [70] that
the second effect prevails, i.e. that adding fibers increases the MFPT. In our model, we capture the MFPT
behavior by using a mean-field approximation for the case φ 
 1. Specifically, for aligned fibers (S = 1),
diffusion is hindered only along the x–z plane, and we approximate by 1 − φ the probability of succeeding
to move in this plane. For other values of S, the diffusion is also hindered in the y axis. Hence, we
approximate by 1 − φ

(
px + py

)
= 1 − φ

(
pz + py

)
= 1 − φ(2 + S)/3 the probability of succeeding to move

in the x–z plane, and by 1 − φ
(
px + pz

)
= 1 − 2φ(1 − S)/3 the probability of succeeding to move in the y

axis. Therefore, the function Ω0

(
x, y, z

)
used in equation (6) for φ = 0 depends on φ and on S via the new

function

Ω
(
x, y, z,φ, S

)
=

(
1 − φ

2 + S

3

)
[ω (πx) + ω (πz)] +

(
1 − 2φ

1 − S

3

)
ω

(
2πy

)
. (7)

We suggest that α0 in equation (5) should be replaced by α(φ) which is obtained by substituting this
expression for Ω0 in equation (6). After expanding α(φ) to first order in φ, we obtain that
α(φ) = α0 − α1φ, with

α1 =

∫ 1

0

∫ 1

0

∫ 1

0

ω (πx) + ω (πz)

Ω2
0(x, y, z)

dx dy dz =
2

3
α0 ≈ 0.337. (8)

Note that by definition px + py + pz = 1, and thus to first order in φ, the MFPT is independent of S. Thus
we expect that for low φ the MFPT will be given by

〈t〉 =
(

1 − 2φ

3

)
α0V

2D0
. (9)

To test our predictions, we plot in figure 3(A) the MFPT as a function of (1 − 2φ/3)V for small values
φ < 0.15 of fiber volume occupation. We see that for these low values of φ, fiber alignment S does not affect
target finding (magenta and cyan data), and our theoretical prediction in equation (9) describes well the
numerical results.

To characterize the target finding dynamics, we obtain the FPT probability densities for values of fiber
occupation fractions below the percolation thresholds. In the absence of fibers (φ = 0), the FPT probability
density is very close to exponential, while for increasing values of φ < φC, deviations from exponential
behavior appear at short times, see figure 3(B). Thus, as the system approaches percolation, the FPT
probability densities are not fully characterized by a single time scale. Note that also without fibers we
expect deviations from exponential at short times, as will be discussed in section 5.2 below. However, for
the system size shown here, these deviations occur at very short times that are beyond the range plotted in
figure 3(B).

Target finding dynamics for fiber densities higher than the critical thresholds are very different if fibers
are aligned or isotropically distributed. In the case S = 0, the diffusion coefficient decays to zero for
φ > φ3D

C , and thus, the MFPT diverges, and the FPT probability density is no longer defined, as shown in

5
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the inset of figure 3(A). For S = 1, the MFPT follows a complex behavior for φ � φ2D
C , exhibiting a sharp

decrease around φ2D
C , as shown by the inset in figure 3(A). Moreover, the FPT probability density for

φ � φ2D
C follows a non-monotonic behavior characterized by three different time scales: the MPFPT at short

FPTs, the MFPT at intermediate time scales, and the time scale of distribution tail (TSDT), at long FPT, as
shown in figure 3(C). We define the TSDT as the decay rate t̂ of the exponential tail of the FPT probability
density. For these cases, channels in the x–z cross section are formed, reducing the dimensionality of the
dynamics from 3D to 1D. In section 5, we study in detail how the channel structure affects the FPT
probability density for fully aligned fibers (S = 1), and in section 6 we extend that to intermediate
alignment 0 < S < 1, but before these steps, in section 4 we first consider the simpler full 1D limit, which is
obtained for φ ≈ 1 and S = 1.

4. 1D searching

In this section we present the limiting case of a high density (φ ≈ 1) of aligned fibers (S = 1), for which the
diffusing molecule is confined to a 1D line along the direction of the fibers. In our lattice model, the
channel is aligned along the y axis and has a cross section equal to one. Due to the periodic boundaries of
the system, the topology of the channel can be understood as a ring-like structure with a circumference of
L y and a single target that can be reached by the tracer molecule either from the left or from the right side
of the ring. The probability density of FPT to the target is related to the survival probability H(t) that the
tracer did not yet reach the target up to time t by [71]:

F(t) = −∂H(y, t)

∂t
. (10)

Due to the periodic boundary conditions, the survival probability is equal to the probability that a tracer
diffusing on a finite system of length L y with absorbing boundary conditions at y = 0 remains in the
system:

H(t) =

L y−1∑
y=1

P(y, t). (11)

We obtain the probability of finding the tracer at position y at time t, P(y, t), by solving the diffusion
equation. In appendix B we show that for the specific case that the initial position of the tracer is
equidistant from the two boundaries, i.e. y0 = L y/2, the FPT probability density is given by:

F(t) =
2

L y

L y/2∑
m=1

(−1)m+1 ω (k2m−1) exp [−ω (k2m−1) t] cot

(
k2m−1

2

)
, (12)

where ω(ψ) is defined above and kn = πn/L y. This FPT probability density has multiple time scales. At
long times, the FPT probability density decays exponentially, F(t) ∼ exp

(
−t/t̂

)
, with the TSDT for

L y � 1 given by:

t̂ ≈
L 2

y

π2D0
. (13)

The MFPT of the distribution in equation (12) is:

〈t〉 = 2

L y

L y/2∑
m=1

(−1)m+1
cot

(
π(2m−1)

2L y

)
ω (k2m−1)

=
L 2

y

8D0
. (14)

We also obtain from equation (12) the MPFPT of the distribution:

t∗ =
β

π2

L 2
y

D0
, (15)

with β ≈ 0.411 being the positive solution of the transcendental equation

∞∑
m=0

(−1)m(2m + 1)3 exp
[
−(2m + 1)2β

]
= 0. (16)

These characteristic time scales all scale with the system size and the diffusion coefficient as L 2
y/D0, but

exhibit different prefactors: 1/π2 ≈ 0.1 for the TSDT, 1/8 for the MFPT, and β/(π2) ≈ 0.04 for the

6
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Figure 4. Channel characterization for S = 1. (A) Probability density of the x–z cross-sectional area for different values of φ.
Black dashed lines are the exponential decay of the channel size distribution. Inset: the average channel size scales as |φ− φ2D

C |−γ ,
with γ = 43/18 [60]. (B) Probability density of the radius of gyration of 4 × 105 channels with a fixed value of N = 484. Lower
inset: the radius of gyration increases as N1/df . Upper inset: the variance of N increases quadratically as a function of the mean
channel size 〈N〉. Statistics are performed for 5 × 104 randomly generated fiber configurations for each volume fraction.

MPFPT. The first two time scales are similar, with the TSDT slightly smaller than the MFPT, while the
MPFPT is about one order of magnitude smaller than the TSDT and the MFPT.

Figure 3(C) shows the perfect agreement between the analytical expression for the 1D FPT probability
density equation (12) and numerical simulations of 1D channels with L y = 100. At long times, the
behavior of the FPT probability density is fully described by a simple exponential decay. Importantly, when
considering our percolation system, we see that for aligned fibers (S = 1) at high occupation fractions, the
FPT probability density approaches the 1D FPT probability density. This results from a reduction of
dimensionality in the dynamics of the system and the emergence of narrow, elongated channels, and will be
the focus of section 5.

5. Quasi-1D searching

For fiber occupation fractions φ2D
C < φ < 1 and S = 1, elongated channels with complex cross-sectional

shape emerge, and as φ approaches φ2D
C from above, the channel structure becomes fractal. We thus focus

on how channel shape changes as a function of the volume occupation fraction and plot in figure 4(A) the
probability density F(N) of the number N of lattice sites in the x–z cross-sectional area of the channels for
different values of φ. For values of φ just above φ2D

C , the channel size is distributed with an exponential tail
but with a clear shoulder. Hence, channels manifest two characteristic size scales, one for large channels and
another one for more compact channels. As φ increases, the distributions shift toward smaller values of N;
the distribution becomes narrower, and single-exponentially distributed [72]. In the inset of figure 4(A), we
plot the average channel size in the cross-sectional area 〈N〉 as a function of φ− φC, together with the
known relation from percolation theory 〈N〉 ∼ |φ− φ2D

C |−γ , with γ = 43/18 [60]. Specifically, we show in
figure 3(C) that systems with fiber occupation fractions of φ � 0.6 follow the FPT probability density of the
1D target-finding process, indicating that for narrow channels with values of 〈N〉 � 10, the dynamics are
effectively 1D.

To further understand the structure of the channels, we calculate the channel radius of gyration Rg,
which is defined from:

R2
g =

1

N

N∑
i=1

(
xi − 〈x〉

)2
+

(
zi − 〈z〉

)2
, (17)

with xi and zi, being the position of a lattice site within the channel’s cross section. We now fix a
cross-sectional area of the channel to N = 484 sites and obtain the distribution of the radius of gyration
F(Rg), as shown in figure 4(B). The distribution shows that despite the fixed value of N, channels with
different shapes are obtained. Additionally, the lower inset in figure 4(B) shows that the radius of gyration
scales as Rg ∼ N1/df , with df = 91/48 the fractal dimension of 2D random percolation [60, 73]. Finally, in
the upper inset of figure 4(B) we plot the variance of N as a function of 〈N〉, and observe that it increases
following the relation Var(N) ∼ 〈N〉2.

7
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Figure 5. FPT probability densities for the quasi-1D system. (A) FPT probability densities of nine randomly chosen channels at
φ = 0.45. (B) FPT probability densities of three channels with different Rg but same value of N = 484. Black dashed lines
represent the 3D exponential behavior and the red line is equation (12) for the 1D FPT probability density. Statistics are
performed for 2 × 105 finding events.

5.1. FPT probability density in disordered channels
In figure 3(C) we show that for channels with L y = 100, S = 1, and φ�φ2D

C the FPT probability density is
not the 3D exponential distribution, nor the 1D distribution. Instead, for these cases, as φ approaches φ2D

C

from above and the channel shapes become fractal, the MPFPT becomes more pronounced and shifts to
smaller values. Note that for φ = 0.42, the MFPT and the MPFPT differ by almost two orders of magnitude.

An important point to consider is how the channel size modulates the FPT probability density. Thus, we
next choose a fiber occupation fraction of φ = 0.45 and randomly select nine channels with different values
of cross-sectional area N and run our random-walk simulations for each channel configuration, as shown in
figure 5(A). Here, it becomes evident that the channel’s cross-sectional area determines the shape of the
FPT probability density. For example, for N = 5, the distribution follows the 1D behavior of the situations
with high volume occupation fractions. For N = 963, the distribution has a pronounced maximum at the
MPFPT at low FPTs, similar to the case φ = 0.42, in which the fiber density is close to the percolation
threshold. The simulations show that as the cross-sectional area of the channel increases, the MPFPT
monotonically decreases in values of normalized time t/〈t〉. Similarly, the TSDT monotonically decreases as
the cross-sectional area increases. After averaging the contribution of all the channels, the FPT of the
ensemble recovers the shape of the distribution for φ = 0.45, see figure 3(C). The structures of two of the
chosen channels are presented in figure 5(A); in the case N = 26, the channel is narrow, and the FPT
probability density is similar to that of the 1D case. The shape of the channel with N = 443 is more
complex, exhibiting internal holes and sharp edges, that support relatively directed trajectories of the tracer
toward its target, leading to an FPT probability density with a pronounced MPFPT at short time scales.

We now focus on the effect that channel shape has on the FPT probability density in the natural
channels obtained from randomly positioning fibers. For this, we fix the cross-sectional area at N = 484,
and choose channels with three different shapes, with Rg = 12, 14.9, and 19.4. Figure 5(B) shows that,
intriguingly, the FPT probability densities for these three channels seem qualitatively similar, despite the
difference in their values of Rg. This behavior contrasts with the previously observed effects of φ and N. The
FPT probability densities exhibit a pronounced MPFPT similar to the systems with φ�φ2D

C . Quantitatively,
the channel with Rg = 19.4 displays a more pronounced MPFPT than the channel with Rg = 12. These
findings suggest that for the natural channels, the radius of gyration moderately modulates the FPT
probability density. For completeness, we plot in black in figure 5(B) the FPT probability density obtained
from the whole ensemble of channels with N = 484.

5.2. Synthetic channels
To further understand the effect of channel shape and size on the FPT probability density, we now consider
synthetic channels of predefined shapes and sizes, with square cross section N = Lx × Lx (figure 6(A)), as
well as rectangular channels with different aspect ratios N = Lx × Lz (figure 6(B)). This extends what we
studied in section 3 above for cubic domains. Note that the lengths L i are the lattice dimensions in all our
simulations, whereas Li are the dimensions of the synthetic channels considered here. Thus, in general
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Figure 6. FPT probability densities for synthetic channels. (A) FPT probability densities for square channels with varying values
of N = Lx × Lx. (B) FPT probability densities for rectangular channels with varying aspect ratios for the fixed cross-sectional area
N = 484. We plot in dashed lines the second order approximation, equation (23) of our solvable model. Black dashed lines
represent exponential behavior and the red line is equation (12) for the 1D FPT probability density. Statistics are performed for
2 × 105 finding events.

Li � L i. Specifically, for both channel shapes we choose Ly = L y = 100. The radius of gyration for these
systems is

R2
g =

L2
x + L2

z − 2

12
. (18)

These channel geometries allow us to solve the FPT probability density, based on the evolution equation for
the probability density P (r, t) of the particle to be at position r = (x, y, z) at time t. For that, we make use of
equations (3) and (4) above, and express P (r, t) = PX (x, t) PY

(
y, t

)
PZ (z, t). We separately obtain PX (x, t)

and PZ (z, t), by implementing reflecting boundary conditions at x = 0, Lx and z = 0, Lz, and PY

(
y, t

)
by

taking periodic boundary conditions, i.e., PY

(
y, t

)
= PY (y + Ly, t). Additionally, for simplicity, we assume

that Ly is even. After taking the Laplace transform of P (r, t) and using equation (4), we obtain the Laplace
transform of the FPT probability density, or its generating function,

F̃ (rT, s) =

∫ ∞

0
F(r, t)e−st dt =

∑Lx−1
nx=0

∑Lz−1
nz=0

∑Ly−1
ny=0

(−1)ny g(nx,x0,Lx)g(nz ,z0,Lz)

s+ω
(

πnx
Lx

)
+ω

(
πnz
Lz

)
+ω

(
2πny

Ly

)

∑Lx−1
nx=0

∑Lz−1
nz=0

∑Ly−1
ny=0

g(nx ,x0,Lx)g(nz ,z0,Lz)

s+ω
(

πnx
Lx

)
+ω

(
πnz
Lz

)
+ω

(
2πny

Ly

)
, (19)

with

g (n, x, L) =
(
2 − δn,0

)
cos2

(
πn (2x − 1)

2L

)
, (20)

and the function ω(ψ) defined in section 3 above. For the complete derivation, see appendix A. Similar
expressions for the generating function of the FPT probability density were derived in [74] for a
d-dimensional system with arbitrary boundary conditions. Here, we concentrate on thoroughly
investigating the specific system at hand of rhombic 3D channels.

From the Laplace transform of the FPT probability density, we obtain the MFPT

〈t〉 =
∑

nx ,ny ,nz

[1 − (−1)ny ] g
(
nx, Lx/2� , Lx

)
g
(

nz, Lz/2� , Lz

)
Ω0

(
nx
Lx

, nz
Lz

, ny

Ly

) . (21)

We note that the sum over nx, ny, nz in equation (21) includes all values of nx, ny and nz between 0 and
Lx − 1, Ly − 1 and Lz − 1, respectively, except for the single point nx = ny = nz = 0, such that Ω0 is always
positive.

In general, inverting the Laplace transform of the FPT probability density is not trivial. Therefore, we
approximate the Laplace transform F̃ of the FPT by functions F̃M which agree in the first M terms in their
Taylor expansion. For M = 1, 2 these approximations can be inverted explicitly by
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Figure 7. Comparison between the analytical approximation for the FPT probability density, F(t), and the numerical results
(green) for square cross sections. The different colors are the first F1(t) (blue), second F2(t) (red), and third F3(t) (black) order
approximations.

F1 (t) =
1

〈t〉 e−t/〈t〉, (22)

F2 (t) =
2√

2 〈t2〉 − 3〈t〉2
exp

[
− 〈t〉 t

2〈t〉2 − 〈t2〉

]
sinh

⎛
⎝

√
2 〈t2〉 − 3〈t〉2

2〈t〉2 − 〈t2〉
t

⎞
⎠ . (23)

Higher order approximations are given by

FM =

M∑
ν=1

Aν eξν t , (24)

where ξν are the roots of an M’th order polynomial. The polynomial and the coefficients Aν are further
detailed in appendix A. We note that the second order approximation F2(t) is valid only if

2〈t〉2 �
〈

t2
〉
. (25)

The range of validity of higher order approximations is smaller, as discussed in appendix A. In particular,
we find that if both Lx and Lz are smaller than Ly, then the second order approximation is valid.

Figure 6(A) shows the FPT probability densities of our simulations for square channels with different
cross-sectional areas N. Additionally, we plot in dashed lines in figure 6(A) our second-order approximation
F2(t) of the FPT probability density, showing excellent agreement with our simulations except for
very short times. Interestingly, for all considered cases, the shape of the FPT probability densities differ from
the ones that are naturally obtained from percolation. For small squares, the distribution follows the 1D
behavior, as shown above for narrow channels. The MPFPT shifts toward lower FPTs when increasing the
square lateral size, but without sharply increasing its peak, in contrast to the natural percolation case. Note
that the shape of the distribution gradually changes from the 1D limit to the exponential behavior seen for
the cubic case with φ = 0 and Lx = Ly = Lz = 100. We conclude that channel size strongly modulates the
magnitude of the MPFPT, in some cases making it more than one order of magnitude smaller than the
MFPT. However changing channel size using the simplest square-shaped synthetic channels is not
enough in order to capture the qualitative evolution of the FPT probability density seen above for natural
channels.

In order to better see the location of the MPFPT and the behavior of the FPT at small times, we compare
the FPT probability density from the numerical results to the analytical approximations up to third order.
For narrow channels, the second and third order approximations give progressively better results for short
times, see figure 7. For wider channels, the first order approximation (a simple exponent) agrees very well
with the results at times longer than the MPFPT, as shown in figures 7(C) and (D).

10



New J. Phys. 22 (2020) 103008 D Gomez et al

Figure 8. Comparison between the analytical approximation for the FPT probability density, F(t), and the numerical results
(green) for rectangular cross sections of the same area N = 484. The different colors are the first order F1(t) (blue), second order
F2(t) (red), and third order F3(t) (black) approximations. The higher order approximations are not shown for the narrow
rectangular cross sections, because they are invalid there.

Figure 9. The MPFPT t∗ (A) and the ratio between the MPFPT and the MFPT t∗/ 〈t〉 (B) for square cross sections of size Lx × Lx

as a function of Lx. In all cases Ly = 100. The empty circles are the results of the approximation, equation (26), and the full
squares are the simulation results.

From our solvable model we can also obtain an approximation for the location of the MPFPT, by
looking at the maximum of F2(t):

t∗ =
2〈t〉2 −

〈
t2

〉√
2 〈t2〉 − 3〈t〉2

cosh−1

⎡
⎣ 〈t〉√

4〈t〉2 − 2 〈t2〉

⎤
⎦ . (26)

From figures 6 and 8 we see that the position of the MFPT is accurately captured, however from figures 6(B)
and 8(B) we find that the magnitude of the peak is not. Figure 9 shows the very good agreement between
the approximation for the MPFPT (equation (26)) and the simulation results. We find that for square cross
sections the MPFPT has a maximum value and that it vanishes for Lx close to the system’s length Ly, while
the ratio between the MPFPT and the MFPT is a decreasing function of the cross-section size. Note that the
location of the peak at the MPFPT as predicted by the second order approximation agrees very well with the
numerical results, and there is no appreciable improvement given by the third order approximation in this
regard, even for the narrower channels shown in figures 7(A) and (B).

Next, we fix the cross-sectional area at N = 484 and consider rectangular channels with different aspect
ratios, see figures 6(B) and 8. The FPT in the rectangular case 44 × 11 is distributed similarly to the square
shape 22 × 22. As the aspect ratio increases in the 121 × 4 system, the FPT probability density exhibits a
pronounced peak around the MPFPT, in clear contrast to the shape of the FPT probability densities of
square channels. Larger values of the aspect ratio further increase the peak of MPFPT and shift its value
toward lower values of FPT/MFPT. For the fully elongated channel 484 × 1, with a width of one lattice site,
the MPFPT is almost two orders of magnitude smaller than the MFPT, stressing the strong effect of the
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Figure 10. The characteristic time scales are modulated by channel size and shape. (A) The MFPT as a function of N for square
and linear channels, and channels from the natural percolation model. Purple and blue dashed lines represent equation (21) for
square and linear channels, respectively. (B) TSDT (upper panel) and MPFPT (lower panel) as a function of the MFPT for
different channel shapes. Black dashed lines are the identity line of slope one. (C) Modulation of the MFPT, TSDT, and MPFPT
for different channel structures for a fixed value of N = 484. Statistics are performed for 2 × 105 finding events.

channel shape on the FPT probability density. We note that our solvable model does not entirely capture the
complex shape of FPT probability densities for elongated channels, as shown in figure 8.

5.3. Channel structure modulates the characteristic time scales
We now examine the effect of channel size and shape on the three different time scales MFPT, MPFPT, and
TSDT. First, we plot in figure 10(A) the MFPT for different channel geometries as a function of N. We
observe that for small cross-sectional areas of N < 10 (10% of the channel’s length L y = 100), the MFPT
effectively follows a 1D dynamics. In this regime, channels with a square or elongated shape or obtained
from our percolation model, exhibit the same MFPT. Here, the MFPT scales with the source-to-target
distance squared, L 2

y . As N increases, the 3D shape of the channels starts to affect the dynamics of the
tracer, and the MFPT rapidly increases in all considered channel shapes. Therefore, modulation of the ratio
between N and L y controls the reduction of dimensionality in the target-finding dynamics. Remarkably,
for values of N � 10, channel shape influences the MFPT. Linear channels with a width of one lattice site,
exhibit the highest MFPT. On the contrary, for a given value of N, square channels have the lowest MFPT.
Note that for values of N > 200, square channels behave as the 3D system characterized by equation (5).
Our solvable model captures the MFPT for these two extreme channel shapes, as shown by the blue and
purple dashed lines. Interestingly, the ensemble of natural channels quantitatively behaves more similarly to
the synthetic linear channels than to the square channels. We note that for this case, we use the average
channel size obtained for each value of φ, instead of a fixed value of N. The MFPTs from these channels are
located between the square and linear channels.

Motivated by the MFPT dependence on channel structure, we study how the MPFPT and the TSDT
correlate with the MFPT. In general, we see that for all channel shapes, the TSDT is highly correlated with
the MFPT, see figure 10(B) upper panel, and therefore, with the cross-sectional area N of the channel, see
appendix C. Moreover, we see that the TSDT–MFPT correlation is affected by the channel shape.
Specifically, we see that for square channels, the MFPT converges toward the TSDT, increasing with N.
Instead, for linear channels with N � 10, the TSDT becomes larger than the MFPT and rapidly grows with
N. Note the excellent agreement of our solvable model with our simulations. For channels originated from
our percolation model, the TSDT follows a similar behavior to that of the linear channels.

The short-time behavior of the FPT probability density, which is characterized by the MPFPT, is also
channel shape-dependent. We plot in the lower panel of figure 10(B) the MPFPT as a function of the MFPT.
In general, the MPFPT corresponds to events where the tracer finds its target in a relatively direct manner.
We consider square channels with values of N � 702 and see that the MPFPT increases with the MFPT. As
the channel’s cross-sectional area increases, the trajectories become less directed, and the MPFPT increases.
Importantly, we showed in figure 9 above that the MPFPT sharply decreases as the system dimensions Lx

and Lz approach L y and the lattice becomes cubic. In this limit, the MPFPT corresponds to perfectly
directed trajectories toward the target. Still, the probability of such events is very low, and the particle needs
to scan, on average, the systems volume to find its target. For linear channels, the MPFPT starts increasing
for low values of the MFPT but then saturates and remains constant as the MFPT increases. Here, the
narrow structure of the channel ensures that the directed trajectories toward the target are similar, despite
the differences in the channel length. In case the tracer leaves the vicinity of the target and diffuses toward
the edges of the channel, the MFPT increases, and in particular, the TSDT happens to dominate the
long-time behavior of the FPT probability density. Similar to the behavior of the MFPT and TSDT, the
MPFPT for channels from our percolation model is quantitatively similar to the linear channels, indicating
that the local fractal structure of the channels confines the directed trajectories toward the target.
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We now fix a value of N = 484 and quantify how the channel structure, characterized through Rg,
modulates the different time scales. We take channels with varying values of Rg = 12, 14.9, and 19.4, from
the natural percolation model and compare their time scales with the square and linear channels. We show
in the upper panel of figure 10(C) that the MFPT increases with Rg, i.e., channel elongation. As Rg

increases, the time needed for the tracer to come back to the vicinity of its target increases, spending time in
regions of the channel where the target is not present, and thus increasing the MFPT. Remarkably, although
all cases have the same channel volume V = N × L y, channel shape modulates the MFPT, implying that
the MFPT no longer defines the diffusion-controlled process, affecting the typical notion of reaction
dynamics. Similarly, the TSDT increases with the channel elongation, however the MPFPT is highest for
square channels. Specifically, the MPFPT is similar for the three considered natural channels and the linear
channel. These results support the notion of local channel compactness supporting the fast trajectories
toward the target.

6. Intermediate fiber alignment

Finally, we consider intermediate values of the fiber nematic order parameter S and numerically obtain the
FPT probability densities for different values of φ, as shown in figure 11. We note that all the systems with
S �= 1 undergo a drilling percolation transition at some S-dependent critical density φ3D

C (S). For example,
for the cases S = 0.5, the critical density is φ3D

C ≈ 0.83 [56]. For values of φ > φ3D
C , the FPT diverges. In

general, for all the considered values of S, similarly to S = 1, the FPT probability density has an exponential
tail with deviations at short times. For systems with values of S � 0.5 and high values of φ � 0.65, the FPT
probability density qualitatively follows the shape of the distribution for the 1D case. Here, elongated
channels along the y-axis emerge, effectively reducing the dimensionality of the dynamics. On the contrary,
for intermediate values of φ and low values of S � 0.2, no elongated channels are formed, and the FPT
probability density exhibits a pronounced MPFPT. Remarkably, for increasing fiber densities, the FPT
probability densities for systems with S �= 1 behave qualitatively similar to a case with S = 1, indicating that
we can map the systems with S �= 1 onto the S = 1 case. This mapping consists of identifying the fraction of
fibers that run into the x–z plane in a case with S �= 1, and then, considering a new system of aligned fibers
S = 1 with such areal fiber density. Specifically, we find the areal density φ̃ = M/(L xL z), by using
px = pz = (1 − S)/3 and py = (2S + 1)/3 in the previously given relation for φ, and solving the third-order
equation:

φ̃3

(
2S3 − 3S2 + 1

27

)
− φ̃2

(
1 − S2

3

)
+ φ̃− φ = 0. (27)

The areal fiber density on the x–z plane is the real solution of equation (27) times py, i.e., φ̃(2S + 1)/3,
and is presented in figure 12. For example, for S = 0.5 and φ = 0.5, the corresponding mapping is to a
system with S = 1 and φ = 0.387. Figure 11 shows the impressive agreement of the FPT probability
densities for the considered mapped systems. Additionally, we plot in figure 12(B) the relative deviations of
the MFPT 〈t〉 for systems with S �= 1, from the MFPT 〈̃t〉 obtained for the corresponding mapped systems
with S = 1. In general, deviations are small for low values of φ and high values of S. As the systems become
more isotropic, and the fiber density increases, the deviations increase as well. Interestingly, the relative
deviation 〈t〉/ 〈̃t〉 − 1 increases exponentially with fiber density as aebφ, with b ≈ 7.18 and the prefactor
decreasing linearly with S, a = c(1 − S) with c ≈ 0.017, as shown by the inset in figure 12(B). Therefore,
our model can be applied to relevant biological systems, which in general have fibers oriented with arbitrary
nematic order parameters 0 < S < 1, and not only the two extreme cases S = 0 and S = 1.

7. Discussion

We demonstrated how the FPT probability density of a target-finding process is affected by the size and
shape of the domain in which the process takes place. In our lattice model, before the system reaches
percolation, the FPT process is characterized by an exponential distribution, and the MFPT scales with the
available volume. As φ approaches the critical densities of the system φ3D

C and φ2D
C , for S = 0 and S = 1,

respectively, we observed significant deviations from exponential behavior. In the presence of isotropically
positioned fibers, once the system reaches percolation at φ3D

C , the FPT diverges. On the contrary, when
fibers are fully aligned, the dynamics are richer, and FPT probability densities with different shapes emerge.
Thus, fiber alignment and fiber density are essential in the understanding of the target-finding process.
Additionally, we showed that for intermediate values of fiber densities φ�φ2D

C of aligned fibers, complex
FPT probability densities are obtained. These distributions are characterized by three time scales: the
MPFPT, the MFPT, and the TSTD. We saw that by modulating the channel size and its shape, these time
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Figure 11. FPT probability densities for systems with intermediate nematic order parameters 0 < S < 1 can be mapped onto
systems with aligned fibers S = 1 via equation (27). Black dashed lines represent exponential behavior and the red line is
equation (12) for the 1D FPT probability density. Statistics are performed for 2 × 105 finding events.

Figure 12. (A) Fiber density mapping for systems with 0 < S < 1 to systems with S = 1, equation (27), for different values of S.
(B) Relative deviations of the MFPT of systems with 0 < S < 1 from the mapped system with S = 1, for different values of S. The
relative deviations are fitted to aebφ, with b = 7.18. Inset: linear dependence on S of the prefactor a. Data is fitted to (1 − S)c,
with c = 0.017.

scales were strongly affected. For small cross-sectional areas of N � 10, channel shape did not affect the FPT
probability density much, and the characteristic time scales remained invariant. In contrast, for channels
with larger cross-sectional areas, the FPT probability density changed with channel shape. Specifically, we
saw that linear channels exhibited higher MFPTs than the compact square channel shapes. We also showed
that the long-time behavior of the FPT probability density, characterized by the TSTD, is correlated with the
MFPT and less sensitive to channel shape. Moreover, we numerically demonstrated that the short-time
behavior of the FPT probability density is very sensitive to channel shape. We saw that for linear channels,
the MPFPT effectively remains constant as the MFPT increases. These results indicate that the confined
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structure of the linear channels supports relatively directed trajectories of the tracer toward its target. Such
directed trajectories remain unaffected as the channel aspect ratio increases since, in those finding events,
the tracer does not escape from the vicinity of its target, and the edges of the channels are not explored.
Contrarily, for square channels, the MPFPT increases with the MFPT for channels with cross-sectional areas
of N � 70. Here, as N increases along the x–z plane, the directed trajectories defocus, leading to larger
MPFPT and MFPT. When considering the ensemble of natural channels from our percolation model, we
observed that the FPT probability densities and its characteristic time scales qualitatively behave more
similarly to elongated channels. These observations indicate that the complex fractal shape of the channels
support directed trajectories to the target, in a similar way as the linear channels do. We note that the lattice
model we use aims to create a clear conceptual understanding of channel emergence through percolation in
the lattice and the resulting FPT dynamics on those geometries. The discrete nature of the model imposes
limitations on the fiber geometries, in their positions and orientations. It would be interesting to study this
complex fibrous system in an off-lattice model.

In general, biological systems have a nematic order parameter that lies between the extreme values of
S = 0 and S = 1. Specifically, the analysis of collagen fiber alignment from ECM porcine urinary bladder
obtained an average fiber alignment of S ≈ 0.54 [75]. Also, in artificial ECM environments, such as collagen
or fibrin hydrogels, the band area between communicating cells reaches values of around S = 0.5 to 0.7
[56]. We, therefore, studied the intermediate cases with fiber alignments 0 < S < 1 and showed that they
are accurately captured via a mapping onto the case S = 1. The mapping was achieved by obtaining the
occupation fraction of the fibers that are aligned along the preferred direction, and then setting a new
system with only those fibers, in such a way that the nematic order parameter is S = 1. We showed that
bellow percolation, the 0 < S < 1 cases exhibit very similar FPT probability densities and characteristic
time scales as the mapped case. Thus, the understanding gained for the aligned case (S = 1) is applicable for
more realistic systems with intermediate values of the nematic order parameter S. It would be interesting to
further study this mapping and its implications.

Our findings show that the classical description of diffusion control, given only in terms of the MFPT, is
not accurate for biochemical reactions in environments with complex shapes and at a low number of
molecules. Instead, the MPFPT and the TSDT should also be considered. We observed that the shape of
narrow channels modifies the FPT probability density, modulating the magnitude of the MPFPT and
affecting the MFPT. Interestingly, the MFPT is different for channels with the same volume but different
shapes. Consequently, the law of mass action, which states that the reaction rates are directly proportional
to each of the reactant concentrations [76], does not apply to our case with channels that support
pronounced MPFPTs. Therefore, for sensory systems in cells that respond to low molecular concentration,
two first-passage events will be characterized by very different reaction times [12, 16]. A natural extension
of our work is to consider the impact of attractive non-specific interactions between the tracer molecule and
the elongated obstacles on the characteristic time scales of the target finding process [77].

Previous studies have shown that cells continuously remodel the ECM structure by applying forces to
the fiber elements [37, 38, 47], and by degrading or generating new ECM fibers [39, 40]. As this remodeling
takes place, transport of molecules can be affected, leading to the possibility of biochemical-mechanical
signaling feedback [49, 56]. Also, in this work we considered ECM remodeling events generated by cellular
activities which are much slower (in the order of minutes to hours [78]) than the transport of molecules. In
that case, the picture of static channels in which the molecule travels is appropriate. However, ECM
semi-flexible fibers can thermally fluctuate on a time scale comparable to the diffusion of macromolecules
[79, 80]. Thus, another interesting situation to consider in future studies is the dynamic changes of the
ECM fibers and the channels they form, for example by modeling fibers that change their position as time
progresses. Our work provides a theoretical basis for such experiments, with a deeper understanding of how
fiber remodeling impact molecular transport. Moreover, due to the complex structure of the ECM in
bacterial biofilms, our work can provide further understanding of quorum sensing mechanisms and signal
transduction in bacterial populations [81].
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Appendix A. 3D synthetic channels

In this appendix we solve the discrete diffusion equation for a particle moving on the cubic lattice in a 3D
channel and from it we infer the FPT probability density. The synthetic channels considered in this
appendix are an approximation for the closed natural channels for S = 0 whose boundaries are formed by
the fibers. The synthetic channels do not contain fibers within them. In section A1 we derive the solution
for the diffusion equation. In section A2 we derive the Laplace transform of the FPT probability density.
The moments of the FPT probability density are derived in section A3. The approximations of the FPT
probability density are discussed in section A4, and in section A5 we derive the asymptotic expression for
the MFPT.

Consider a particle moving on the cubic lattice in a 3D channel. In the x–z plane, the channel has a
rectangular cross-section of size Lx × Lz, with reflecting boundary conditions, while in the y axis it is
periodic with length Ly. We are interested in the distribution of the FPT for the particle to first reach a
specific target position rT = (x0, �, z0), which differs from its initial location, r0 = (x0, 0, z0), only in the y
coordinate. In what follows we assume for simplicity that Ly is even and that � = Ly/2, such that with the
periodic boundary conditions, r0 and rT are the farthest away possible along the y-axis. We derive the
expression for general values of x0, z0, but later on concentrate on the specific case where x0 and z0 are in the
middle of the channel.

The FPT probability density, F(rT, t) is related to the probability to find the particle at location r at time
t given that it has not yet visited site rT, P (r, t) by [63]

P (rT, t) = δrT,r0δ (t) +

∫ t

0
P

(
r0, t − t′

)
F

(
rT, t′

)
dt′. (A1)

The first term on the right-hand side of equation (A1) is the probability that at time t = 0 the particle is
already at location rT, and the second term is the probability that before reaching site rT for the first time it
was at site r0 at time t − t′, and then in the time interval t′ it reached site rT once. Taking the Laplace
transform of both sides yields

P̃ (rT, s) = δrT,r0 + P̃ (r0, s) F̃ (rT, s) , (A2)

and therefore, since rT �= r0,

F̃ (rT, s) =
P̃ (rT, s)

P̃ (r0, s)
. (A3)

Furthermore, we can decompose the 3D motion of the particle into independent motions along the
three axes, such that

P (r, t) = PY

(
y, t

)
PX (x, t) PZ (z, t) , (A4)

where PJ

(
j, t

)
is the probability for a 1D walker to be at j at time t, for J = X, Y, Z. In what follows we derive

the 1D probabilities PJ

(
j, t

)
and later transform the probability P (r, t) to Laplace space P̃ (r, s) in order to

obtain F̃ (rT, s).

A.1. Derivation of the 1D probabilities PJ

(
j, t

)
The 1D probabilities PJ(j, t) for J = X, Y, Z evolve according to the discrete-space diffusion equation,

3τ
∂PJ(j)

∂t
= −PJ(j) +

1

2

[
PJ(j + 1) + PJ(j − 1)

]
, (A5)

where we dropped the explicit dependence of PJ on t for brevity. The prefactor of 3 on the left-hand side
comes from the 1D motion accounting for one third of the total 3D motion of the particle, which moves
with rate τ−1 = 1. On a coarse-grained level, the rate τ−1 is related to the diffusion coefficient D0 by
D0 =

1
6τ . For J = Y we impose periodic boundary conditions

PY (y) = PY (y + Ly), (A6)

while for J = X, Z we impose reflecting boundary conditions

3
∂PJ(1)

∂t
= −PJ(1) +

1

2

[
PJ(2) + PJ(1)

]
,

3
∂PJ(LJ)

∂t
= −PJ(LJ) +

1

2

[
PJ(LJ) + PJ(LJ − 1)

]
. (A7)

Assuming a solution of the form
PJ(j) = e−ω(k)t eikj (A8)
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yields
3ω(k) = 1 − cos(k). (A9)

The boundary conditions set restrictions on the allowed values of k as kn = πn
LJ

. Using the initial condition

PJ(j, 0) = δj,j0 , yields for J = Y

PY

(
ry, t

)
=

1

Ly

Ly−1∑
n=0

e
−ω

(
2πn
Ly

)
t

e2iπny/Ly , (A10)

and for J = X, Z

PJ

(
j, t

)
=

1

4LJ

2LJ−1∑
m=0

e
−ω

(
πm
LJ

)
t
(

e−iπm(j0−1)/LJ + eiπmj0/LJ

) (
eiπm(j−1)/LJ + e−iπmj/LJ

)
. (A11)

Setting j = j0 in equation (A11) yields

PJ

(
j0, t

)
=

1

LJ

2LJ−1∑
m=0

e
−ω

(
πm
LJ

)
t

cos2

(
πm

(
2j0 − 1

)
2L

)

=
1

LJ

[
1 + 2

LJ−1∑
m=1

e
−ω

(
πm
LJ

)
t

cos2

(
πm

(
2j0 − 1

)
2L

)]
. (A12)

Note that ω(0) = 0, while for k > 0ω(k) > 0.

A.2. FPT probability density in Laplace space
The Laplace transform of the FPT probability density, or its generating function is therefore

F̃ (rT, s) =

∑Lx−1
nx=0

∑Lz−1
nz=0

∑Ly−1
ny=0

1

s+ω
(

πnx
Lx

)
+ω

(
πnz
Lz

)
+ω

(
2πny

Ly

) e2iπny�/Ly cos2
(

πnx(2x0−1)
2Lx

)
cos2

(
πnz(2z0−1)

2Lz

)
∑Lx−1

nx=0

∑Lz−1
nz=0

∑Ly−1
ny=0

1

s+ω
(

πnx
Lx

)
+ω

(
πnz
Lz

)
+ω

(
2πny

Ly

) cos2
(

πnx(2x0−1)
2Lx

)
cos2

(
πnz(2z0−1)

2Lz

) .

(A13)
Setting � = Ly/2 yields

F̃ (rT, s) =

∑Lx−1
nx=0

∑Lz−1
nz=0

∑Ly−1
ny=0

1

s+ω
(

πnx
Lx

)
+ω

(
πnz
Lz

)
+ω

(
2πny

Ly

) (−1)ny g (nx, x0, Lx) g (nz , z0, Lz)

∑Lx−1
nx=0

∑Lz−1
nz=0

∑Ly−1
ny=0

1

s+ω
(

πnx
Lx

)
+ω

(
πnz
Lz

)
+ω

(
2πny

Ly

) g (nx, x0, Lx) g (nz, z0, Lz)
, (A14)

with

g (n, x, L) =
(
2 − δn,0

)
cos2

(
πn (2x − 1)

2L

)
. (A15)

We now assume that x0 and z0 are in the center of the cross-section, such that if Lx (Lz) is even then
x0 = Lx/2 (z0 = Lz/2), and if Lx (Lz) is odd then x0 = (Lx + 1) /2 (z0 = (Lz + 1) /2). Under this
assumption the functions g (n, x, L) for even and odd values of L are given by

geven (n, L) =

(
2 − δn,0

)
2

[
1 + (−1)n cos

(πn

L

)]
,

godd (n, L) =
(
2 − δn,0

) 1 + (−1)n

2
. (A16)

We compare in figure A1 the analytical result for the Laplace transform of the FPT probability density,
F̃(s), with the numerical results. We find that at small values of s the agreement is excellent, while at higher
values of s where the agreement is lacking, the value of F̃(s) itself is extremely small. The difference is due to
limited statistics in the simulations. In order to see that this is indeed the reason, we ran more simulations
and saw that the numerical results approach the analytical results as the number of realizations increases.

A.3. Moments
From the Laplace transform of the FPT probability density we can find all its moments by

〈tn〉 = (−1)n∂
nF̃ (rT, s)

∂sn

∣∣∣∣
s=0

. (A17)
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Figure A1. Comparison between the analytical result for the Laplace transform of the FPT, F̃(s), and the numerical results for
different system sizes and different number of simulation runs, Ns .

The first moment, or MFPT is

〈t〉 =
∑

nx ,ny ,nz

[1 − (−1)ny ] g (nx, Lx) g (nz , Lz)

Ω0

(
nx
Lx

, nz
Lz

,
ny

Ly

) , (A18)

where
Ω0

(
x, y, z

)
= ω (πx) + ω (πz) + ω

(
2πy

)
, (A19)

and the sum over nx, ny, nz includes all values of nx, ny and nz between 0 and Lx − 1, Ly − 1 and Lz − 1
respectively, except for the single point nx = ny = nz = 0, such that Ω0 is always positive. This special point
is excluded since when taking the derivatives of F̃(s), there are contributions to the sums from both the
nominator and denominator of equation (A14), and in this special point Ω0 = 0 the contributions cancel
each other.

The second moment is

〈
t2

〉
= 2

∑
nx ,ny ,nz

[1 − (−1)ny ] g (nx, Lx) g (nz , Lz)

Ω2
0

(
nx
Lx

, nz
Lz

, ny

Ly

) + 2 〈t〉
∑

nx ,ny ,nz

g (nx, Lx) g (nz , Lz)

Ω0

(
nx
Lx

, nz
Lz

, ny

Ly

) . (A20)

The third moment is

〈
t3

〉
= 6

∑
nx,ny ,nz

[1 − (−1)ny ] g (nx, Lx) g (nz, Lz)

Ω3
0

(
nx
Lx

, nz
Lz

, ny

Ly

) + 6 〈t〉
∑

nx,ny ,nz

g (nx, Lx) g (nz, Lz)

Ω2
0

(
nx
Lx

, nz
Lz

, ny

Ly

)

+ 3
〈
t2

〉 ∑
nx ,ny ,nz

g (nx, Lx) g (nz , Lz)

Ω0

(
nx
Lx

, nz
Lz

, ny

Ly

) . (A21)

We note that since F̃(s) is regular around s = 0, all the moments exist.

A.4. Approximations for the FPT probability density
Since inverting the full form of the Laplace transform of the FPT probability density is not practical, we
consider approximations that can be inverted. In order to find the M’th order approximation, we first
expand F̃ (rT, s) in a Taylor series in s

F̃ (rT, s) =
∞∑

k=0

(−1)k
〈

tk
〉

k!
sk. (A22)

This expansion is valid for s < |̂s| where ŝ is the pole of F̃ with the smallest absolute value. This implies that
in the time domain, the approximation is valid for t > 1/ŝ. In the next step we further approximate F̃ (rT, s)
by

18



New J. Phys. 22 (2020) 103008 D Gomez et al

F̃M (rT, s) =
1∑M

k=0 aksk
, (A23)

such that when equation (A23) is expanded to M’th order in s we retrieve equation (A22). We remark that
equation (A23) is certainly not the only approximation that yields functions with the same moments as the
original function. It was chosen for its simple form. For k = 0, 1, 2, 3 we find that

a0 = 1,

a1 = 〈t〉 ,

a2 = 〈t〉2 − 1

2

〈
t2

〉
,

a3 = 〈t〉3 − 〈t〉
〈

t2
〉
+

1

6

〈
t3

〉
. (A24)

Inverting these approximations for the Laplace transform yields successive approximations for F (rT, t).
In general, the approximated FPT probability density is given by

FM (rT, t) =
1

aM

M∑
ν=1

exp (ξν t)∏M
ν′ �=ν (ξν − ξν′)

, (A25)

where ξν are the roots of the polynomial
∑M

k=0 akξ
k. For M = 1, 2, it is possible to find an analytical

expression for the roots ξν , such that equation (A25) is explicitly

F1 (rT, t) =
1

〈t〉 e−t/〈t〉,

F2 (rT, t) =
2√

2 〈t2〉 − 3〈t〉2
exp

[
− 〈t〉 t

2〈t〉2 − 〈t2〉

]
sinh

⎛
⎝

√
2 〈t2〉 − 3〈t〉2

2〈t〉2 − 〈t2〉
t

⎞
⎠ . (A26)

For M � 3 we can find the coefficients ak exactly for any system size, and solve the resulting polynomial
numerically.

Note that these approximations are valid only if the real part of all the roots ξν is negative. For the first
order approximation, M = 1, the only root is −〈t〉−1 which is negative. The second order approximation is
valid only if

2〈t〉2 �
〈

t2
〉
. (A27)

For the higher order approximations, it is straightforward to check that the M’th order approximation is
valid only if ak � 0 for all k � M. Therefore, the range of validity for each successive approximation is
smaller than the previous one. Figure A2 shows the values of Lx and Lz for which the second order
approximation is valid for different values of Ly. First, we see that the validity depends on the ratios Lx/Ly

and Lz/Ly. We observe numerically that the approximation is valid when

(
Lx

Ly
− γ

)2

+

(
Lz

Ly
− γ

)2

< 1, (A28)

where γ depends on Ly and is very close to 1/3. In the case Lx = Lz, equation (A28) reduces to
Lx/Ly < γ + 1/

√
2. In order to evaluate γ for larger systems, we concentrate on the case Lx = Lz, and find

the largest Lx for which the approximation is valid. Figure A3 shows the ratio Lx/Ly between the largest Lx

for which the approximation is valid and the system’s length Ly. It appears to converge to a value slightly
below 1.05, i.e. γ converges to a value slightly below 0.35.

In the region where it is valid, the second order approximation, F2(t), has a single maximum at the
MPFPT

t∗ =
2〈t〉2 −

〈
t2

〉√
2 〈t2〉 − 3〈t〉2

cosh−1

⎡
⎣ 〈t〉√

4〈t〉2 − 2 〈t2〉

⎤
⎦ . (A29)

Increasing the size of the cross section, Lx × Lz, or decreasing the length of the channel, Ly, decreases the
value of t∗. Note that although t∗ = 0 only in the case of an infinite system, its approximation,
equation (A29), reaches 0 at the edge of validity for the second order approximation when 2〈t〉2 =

〈
t2

〉
.
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Figure A2. The maximum values of Lx/Ly and Lz/Ly for which the second order approximation is valid, for Ly = 10, 20, 50 and
100. The black line is equation (A28) with γ = 1/3.

Figure A3. The bounds on the value of the parameter γ vs Ly, as obtained from square cross sections Lx = Lz. The blue squares
are obtained from the maximal value of Lx for which equation (A28) is satisfied.

A.5. Asymptotic expressions for large Lx, Ly, Lz

In this section we derive asymptotic expressions for 〈t〉 when Lx, Ly and Lz are very large. Changing the
sums over nx, ny and nz in equation (A18) to integrals over x = nx/Lx, y = ny/Ly and z = nz/Lz, and
approximating the function g(n, L) as 1/2 yields

〈t〉 ≈ 3α0LxLyLz =
α0V

2D0
, (A30)

where

α0 =

∫ 1

0

∫ 1

0

∫ 1

0

dx dy dz

Ω0(x, y, z)
≈ 0.505. (A31)

In order to see how good this approximation is we use the Euler–Maclaurin formula for the p’th order
approximation of a sum

L∑
n=1

f (n) =

∫ L

0
f (x)dx +

f (L) − f (0)

2
+

p∑
k=1

B2k

(2k)!

[
f (2k−1)(L) − f (2k−1)(0)

]
+ Rp, (A32)

where B2k are the Bernoulli numbers, f (k)(x) is the k’th derivative of f(x), and Rp is an error term. Note that
p here is an arbitrary positive integer. Using equation (A32) for each of the three sums in equation (A18),
we find that the error term is of order L−(2p+1)

J for J = x, y, z. Next, note that the summand is such that the
function f(x) in equation (A32) satisfies f(x) = f(L − x). Therefore, the second and third terms on the
right-hand side of equation (A32) are identically zero. Hence, we conclude that the difference between the
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exact MFPT, equation (A18), and the approximation, equation (A31), is smaller than L−(2p+1)
x,y,z for all p. This

means that the error is exponentially small in Lx,y,z.

Appendix B. 1D searching

In this appendix, we obtain the FPT probability density of a 1D random walk problem by solving the
discrete diffusion equation. Due to the periodic boundary conditions of our model, the topology of the
channel can be understood as a ring-like structure with a circumference of L y and a single target that can
be reached by the tracer molecule either from the left or from the right side. Let P(y, t) denote the
probability of finding the particle at a time t at a position y, given that it has not been absorbed either by the
target at the left edge, nor by the one at the right edge of the channel. Then, P(y, t) obeys the discrete
diffusion equation, equation (A5), with the boundary conditions

P(0, t) = P(L y, t) = 0. (B1)

Imposing the boundary and initial conditions on the general solution, equation (A8), yields

P(y, t) =
2

L y

L y−1∑
n=1

e−ω(kn)t sin
(
kny0

)
sin

(
kny

)
. (B2)

The first passage time to the target is related to the survival probability that the tracer did not yet reach
the target at time t, H(t), by [71]:

F(t) = −∂H(y, t)

∂t
. (B3)

The survival probability is equal to the probability that the tracer diffusing on the channel of length L y

with absorbing boundary conditions, remains in the system:

H(t) =

L y−1∑
y=1

P(y, t). (B4)

Thus, assuming that the particle starts its diffusive process form the middle of the channel, i.e., y0 = L y/2,
we get that the FPT probability density is given by:

F(t) =
2

L y

L y/2∑
m=1

ω (k2m−1) e−ω(k2m−1)t(−1)m+1 cot

(
π(2m − 1)

2L y

)
. (B5)

The MFPT is given by

〈t〉 =
∫ ∞

t
F(t)dt =

2

L y

L y/2∑
m=1

(−1)m+1
cot

(
π(2m−1)

2L y

)
ω (k2m−1)

=
3

4
L 2

y . (B6)

The same result can be obtained by setting Lx = Lz = 1 in equation (A18). The MPFPT is found by solving

∂F(t)

∂t

∣∣∣∣
t=t∗

=
2

L y

L y/2∑
m=1

ω2 (k2m−1) e−ω(k2m−1)t∗(−1)m+1 cot

(
π(2m − 1)

2L y

)
= 0, (B7)

which in the limit L y →∞ yields equation (15).

Appendix C. Evaluation of the TSDT

The Laplace transform of the FPT probability density, F̃(s), is finite for all values of s with a non-negative
real part, and all its poles have a negative real part. Since the number of poles is finite, the asymptotic
behavior of the FPT probability density is exponential exp

(
−t/t̂

)
. The TSDT, t̂, is given by

t̂ = 1/̂s, (C1)
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where ŝ is the pole of F̃(s) with the smallest real part (in absolute value). The poles of F̃(s) are found by
equating its denominator to zero, and thus ŝ is the smallest root of G(s), defined by

G(s) =
Lx−1∑
nx=0

Lz−1∑
nz=0

Ly−1∑
ny=0

g(nx, x0, Lx)g(nz, z0, Lz)

s + ω
(

πnx
Lx

)
+ ω

(
πnz
Lz

)
+ ω

(
2πny

Ly

) . (C2)

Assuming that |̂s| 
 1, i.e., N ≈
√

Ly and large, G(s) may be expanded around s = 0 such that

G (s 
 1) ≈ 1

s
+

∑
nx,ny ,nz

g(nx, x0, Lx)g(nz, z0, Lz)

ω
(

πnx
Lx

)
+ ω

(
πnz
Lz

)
+ ω

(
2πny

Ly

) , (C3)

and thus ŝ may be approximated by

ŝ ≈

⎡
⎣ ∑

nx ,ny ,nz

g(nx, x0, Lx)g(nz, z0, Lz)

ω
(

πnx
Lx

)
+ ω

(
πnz
Lz

)
+ ω

(
2πny

Ly

)
⎤
⎦
−1

. (C4)

For large enough Ly, the sum can be approximated by the MFPT, and thus t̂ ≈ 〈t〉. For a similar derivation
of the TSDT in more general systems see reference [24].
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