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ABSTRACT: Stochastic resetting is prevalent in natural and man-made
systems, giving rise to a long series of nonequilibrium phenomena.
Diffusion with stochastic resetting serves as a paradigmatic model to
study these phenomena, but the lack of a well-controlled platform by
which this process can be studied experimentally has been a major
impediment to research in the field. Here, we report the experimental
realization of colloidal particle diffusion and resetting via holographic
optical tweezers. We provide the first experimental corroboration of
central theoretical results and go on to measure the energetic cost of
resetting in steady-state and first-passage scenarios. In both cases, we
show that this cost cannot be made arbitrarily small because of fundamental constraints on realistic resetting protocols. The methods
developed herein open the door to future experimental study of resetting phenomena beyond diffusion.

Stochastic resetting is ubiquitous in nature and has recently
been the subject of vigorous studies1 in, for example,

physics,2−4 chemistry,5−7 biological physics,8,9 computer
science,10,11 and queuing theory.12,13 A stylized model to
study resetting phenomena was proposed by Evans and
Majumdar.2 The model, which considers a diffusing particle
subject to stochastic resetting, exhibits many rich properties,
for example, the emergence of a nonequilibrium steady state
and interesting relaxation dynamics2−4,14−18 which were also
observed in other systems with stochastic resetting.19−27 The
model is also pertinent to the study of search and first-passage
time (FPT) questions.28,29 In particular, it was used to show
that resetting can significantly reduce the mean FTP of a
diffusing particle to a target by mitigating the deleterious effect
of large FPT fluctuations that are intrinsic to diffusion in the
absence of resetting.1−4,17,30−32 Interestingly, this beneficial
effect of resetting also extends beyond diffusion and applies to
many other stochastic processes;1,20−22,26,27,33−40 further
studies moreover revealed a genre of universality relations
associated with optimally restarted processes as well as the
existence of a globally optimal resetting strategy.5,6,35−40

Despite a long catalogue of theoretical studies on stochastic
resetting, no attempt to experimentally study resetting in a
controlled environment has been made to date (but see very
recent work that appeared after our arXiv submission41). This
is needed as resetting in the real world is never “clean” as in
theoretical models which glance over physical complications
for the sake of analytical tractability and elegance. In this
Letter, we report the experimental realization of diffusion with
stochastic resetting (Figure 1). Our setup comprises a colloidal
particle suspended in fluid (in quasi-two dimensions), and
resetting is implemented via a home-built holographic optical
tweezers (HOTs) system42−45 described in the Supporting

Information.46 We study two, physically amenable, resetting
protocols in which the particle is returned to the origin: (i) at a
constant velocity and (ii) within a constant time. In both cases,
resetting is stochastic: time intervals between resetting events
come from an exponential distribution with mean 1/r.
Every experiment starts by drawing a series of random

resetting times {t1, t2, t3, ...} taken from an exponential
distribution with mean 1/r. At time zero, the particle is trapped
at the origin and the experiment, which consists of a series of
statistically identical steps, begins. At the ith step of the
experimental protocol, the particle is allowed to diffuse for a
time ti eventually arriving at a position (xi, yi). At this time, an
optical trap is projected onto the particle and the particle is
dragged by the trap to its initial position. A typical trajectory of
a colloidal particle performing diffusion under stochastic
resetting with r = 0.05 s−1 is shown in Figure 1a and
Supplementary Movie 1.46 Note that the trajectory is
composed of three phases of motion: diffusion, return, and a
short waiting time to allow for optimal localization at the origin
(Figure 1b).
Below, we utilize our setup to study the long time position

distribution of a tagged particle and its dependence on the
resetting protocol. We consider the energetic cost of resetting
and characterize the mean and distribution of energy spent per
resetting event. Finally, we study the mean FPT of a tagged
particle to a region in space and the energetic cost of resetting
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in this scenario. We conclude with discussion and outlook on
the future of experimental studies of stochastic resetting.
We first study the case in which upon resetting the particle is

teleported back to the origin in zero time. This case was the
first to be analyzed theoretically,2 thus providing a benchmark
for experimental results. A particle undergoing free Brownian
motion is not bound in space. It has a Gaussian position
distribution with a variance that grows linearly with time.
Repeated resetting of the particle to its initial position will,
however, result in effective confinement and in a non-Gaussian
steady-state distribution: ρ = α α− | |x( ) e x

2
0 0 , where α = r D/0

and D is the diffusion constant.2,3 Estimating the steady-state
distribution of the particle’s position along the x-axis by
digitally removing the return (red) and wait (green) phases of
motion in Figure 1b,46 we find that the experimentally
measured results conform well with this theoretical prediction
(Figure 2a). The steady-state radial density of the particle can
also be extracted from the experimental trajectories by looking

at the steady-state distribution of the distance = +R x y2 2

from the origin. Here too, we find excellent agreement with
theory (Figure 2b).
We now turn our attention to more realistic pictures of

diffusion with stochastic resetting. These have just recently
been considered theoretically in an attempt to account for the
noninstantaneous returns and waiting times that are seen in all
physical systems that include resetting.5−7,20,24−27,40,47 First,
we consider a case where upon resetting HOTs are used to
return the particle to the origin at a constant radial velocity

= +v v vx y
2 2 (Figure 1). This case naturally arises for

resetting by constant force in the overdamped limit. We find
that the radial steady-state density is then given by46

ρ ρ ρ= + −R p R p R( ) ( ) (1 ) ( )D D
c.v.

diff
c.v.

ret (1)

where = + π
α

−

( )p 1D
r

v
c.v.

2

1

0
is the steady-state probability to

find the particle in the diffusive phase. Here, ρdiff(R) =

α0
2RK0(α0R) and ρ α= α

π
R RK R( ) ( )ret

2
1 0

0
2

stand for the condi-

tional probability densities of the particle’s position when in
the diffusive and return phases, respectively, and Kn(z) is the
modified Bessel function of the second kind.48 Bessel functions
naturally appear here because of the rotational symmetry of the
process and the resetting protocol. The result in eq 1 is in very
good agreement with experimental data as shown in Figures 3a
and S3. We note that the theoretical result (eq 1) was also
derived in ref 49 using an alternative method.
Next, we consider a case where HOTs are used to return the

particle to the origin at a constant time τ0. This case is
appealing because of its simplicity. Here, we find that the radial
steady-state position distribution reads46

ρ ρ ρ= + −R p R p R( ) ( ) (1 ) ( )D D
c.t.

diff
c.t.

ret (2)

where pD
c.t. = (1 + rτ0)

−1 is the steady-state probability to find
the particle in the diffusive phase, and with ρdiff(R) =
α 0

2 R K 0 ( α 0 R ) a n d ρ r e t ( R ) =

α α α α− [ + ]πα
α −

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
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2
1

0 0 1 0 1 0 0 0
0
2

0
standing

Figure 1. Experimental realization of diffusion with stochastic
resetting. (a) Sample trajectory of a silica particle diffusing (blue)
near the bottom of a sample cell. The particle sets off from the origin
and is reset at a rate r = 0.05 s−1. Following a resetting epoch, the
particle is driven back to the origin at a constant radial velocity v = 0.8
μm/s using HOTs (red). After the particle arrives at the origin it
remains trapped there for a short period of time to improve
localization (green). The inset shows a schematic illustration of the
experiment. (b) Projection of the particle’s trajectory onto the x-axis.

Figure 2. Steady-state distribution of diffusion with stochastic
resetting and instantaneous returns. (a) Distribution of the position
along the x-axis. Markers come from experiments, and the dashed line
is the theoretical prediction ρ = α α− | |x( ) e x

2
0 0 , where α = r D/0 and

D is the diffusion constant. (b) Radial position distribution. Markers
come from experiments, and the dashed line is the theoretical
prediction ρ(R) = α0

2RK0(α0R)
46 with Kn(z) standing for the modified

Bessel function of the second kind.48 In both panels no fitting
procedure was applied: D = 0.18 ± 0.02 μm2/s was measured
independently, and r = 0.05 s−1 was set by the operator.

Figure 3. Steady-state distributions of diffusion with stochastic
resetting and noninstantaneous returns. (a) Radial position
distribution, ρ(R), vs the distance (R) and the radial return velocity
(v) as given by eq 1. Experimental results obtained for v = 0.8 μm/s
are superimposed on the theoretical prediction (black spheres). (b)
Radial position distribution vs R and the return time (τ0) as given by
eq 2. Experimental results obtained for τ0 = 3.79 s are superimposed
on the theoretical prediction (black spheres).
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for the conditional probability densities of the particle’s radial
position when in the diffusive and return phases, respectively.
Here, Ln is the modified Struve function of order n.48 The
result in eq 2 is in very good agreement with experimental data
as shown in Figures 3b and S5. Note that eq 1 and eq 2
interpolate between the limit of instantaneous returns, with v
→ ∞ or τ0 → 0, and the case of infinitely slow returns where
ρ(R) is dominated by the return statistics. Indeed, we find that
short return times and high return velocities are similar as
returns are effectively instantaneous, while in the other extreme
marked differences are observed (Figures S4 and S6).
A central, and previously unexplored, aspect of stochastic

resetting is the energetic cost associated with the resetting
process itself. As discussed above, stochastic resetting prevents
a diffusing particle from spreading over the entire available
space as it normally would. Instead, a localized, non-
equilibrium, steady state is formed, but the latter can be
maintained only by working on the system continuously.
In our experiments, work is done by the laser to capture the

particle in an optical trap and drag it back to the origin. The
total energy spent per resetting event is then simply given by

τ=E R( ), where is the laser power fixed at 1 W and τ(R)
is the time required for the laser to trap the particle at a
distance R and bring it back to the origin. As the particle’s
distance at the resetting epoch fluctuates randomly from one
resetting event to another (Figure 4a), the energy spent per
resetting event is also random (Figure 4b). To compute its
distribution, we note that E is proportional to the return time
whose probability density function is in turn given by46

∫ ∫ϕ δ τ= ⃗ [ − ⃗ ] ⃗
∞

˜ ˜ ˜t R t R t f t G R t( ) d ( ) d ( ) ( , )
0

0 (3)

Here, f(t) is the probability density governing the resetting
time, R⃗ the d-dimensional position vector, τ(R⃗) the return
time, and G0(R⃗, t) the propagator of the underlying stochastic

dynamics. In our experimental setup, we have f(t) = re−rt and

=
π

−G R t( , ) e
Dt

R Dt
0

1
4

/42
which is the diffusion propagator in

polar coordinates. Moreover, in the case of constant radial
return velocity v, we have τ(R⃗) = R/v. A derivation then yields
the probability density of the energy spent per resetting event46

ψ =E
E

E
K E E( ) ( / )

0
2 0 0

(4)

with α= − −E v0 0
1 1 ; note that this is a special case of the K-

distribution.50,51 The mean energy spent per resetting event
can be computed directly from eq 4 and is given by ⟨E⟩ = πE0/
2. Equation 4 demonstrates good agreement with experimental
data (Figure 4c).
As ⟨E⟩ ∝ v−1, it can be made smaller by working at higher

return velocities. However, the stiffness, k, of the optical trap
must be strong enough to oppose the drag force acting on the
particle so as to keep it in the trap. Assuming the maximum
allowed displacement of a particle in the trap is ∼0.5 μm,52 we
find that working conditions must obey k ≥ 2γv. As the
stiffness is proportional to the laser power, =k (where
is the conversion factor), the maximal working velocity is given
by γ≈v /max

1
2

whichindependent of laser power
minimizes energy expenditure to πγ α≈ − −Emin

1
0

1. Going
to dimensionless variables, we find

⟨ ⟩ =E E v v/ /min max (5)

for v < vmax. This nicely illustrates that ⟨E⟩ cannot be lowered
indefinitely, i.e., that there is a minimal energy cost per
resetting event (Figure 4d).
Having looked at stationary properties of diffusion with

resetting, we now turn attention to first-passage properties
which have numerous applications.4−9,28,29,33−40,53−65 We
recall that while the mean first-passage time (MFPT) of a
Brownian particle to a stationary target diverges,28,29 resetting
will render it finite,2 even if returns are noninstantane-
ous.5−7,20,26,40 To experimentally show this, we consider the
setup in Figure 5a.
A first passage experiment starts at time zero when the

particle is at the origin. Resetting is conducted stochastically
with rate r, and HOTs are used to return the particle to the
origin at a constant return time τ0. However, we now also
define a target, set to be a virtual infinite absorbing wall located
at x = L, i.e., parallel to the y-axis. The particle is allowed to
diffuse with stochastic resetting until it hits the target, and the
hitting times (FPTs) are recorded (Figure 5b). A typical
trajectory extracted from such an experiment with τ0 = 3.79 s,
L = 1 μm, and r = 0.05 s−1 is shown in Figure 5b, Figure S7,
and Supplementary Movie 2. Measurements were also taken
for r = 0.0667, 0.125, 0.5, and 1 s−1.46

To check agreement between experimental FPT data and
theory, we derived a formula for the mean FPT of diffusion
with stochastic resetting and constant time returns46

τ⟨ ⟩ = + [ − ]i
k
jjj

y
{
zzzT

r
1

e 1r
rL D

0
/2

(6)

Equation 6 is in excellent agreement with data as shown in
Figure 5c, including accurate prediction of the optimal
resetting rate which minimizes the mean FPT of the particle
to the target.

Figure 4. Energetic cost of resetting. (a) Radial distance from the
origin vs time for a particle diffusing with a resetting rate r = 0.05 s−1

and constant radial return velocity v = 0.8 μm/s. (b) Cumulative
energy expenditure for the trajectory in panel a (neglecting the cost of
the wait period). (c) Distribution of energy spent per resetting event.
Red disks come from experiments, and the theoretical prediction of eq
4 is plotted as a solid blue line. (d) Normalized energy spent per
resetting event at constant power vs the normalized radial return
velocity as given by eq 5. The minimal energy is attained at a maximal
velocity for which the trap is just barely strong enough to prevent the
particle from escaping.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://dx.doi.org/10.1021/acs.jpclett.0c02122
J. Phys. Chem. Lett. 2020, 11, 7350−7355

7352

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c02122/suppl_file/jz0c02122_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c02122/suppl_file/jz0c02122_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c02122/suppl_file/jz0c02122_si_003.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.0c02122/suppl_file/jz0c02122_si_002.avi
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02122?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02122?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02122?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c02122?fig=fig4&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c02122?ref=pdf


As resetting requires energy, lowering the mean FPT will
have a costwhich to date has been completely ignored. To
compute it, we require the probability density of the return
time in an FPT scenario which is generally given by46

∫ ∫ϕ δ τ= ⃗ [ − ⃗ ] ⃗
∞

˜ ˜ ˜t
p

R t R t f t G R t( )
1

d ( ) d ( ) ( , )FP 0
abs

(7)

where p is the probability that a reset event will occur before a
first passage event and Gabs(R⃗, t) is the reset-free propagator in
the presence of the absorbing target. As the number of resets
per first passage event is geometrically distributed with mean
p/(1 − p), one can compute ⟨EFP⟩, the average energy spent
per first passage event.46 Setting τ(R⃗) = τ0, we find

τ⟨ ⟩ = −E (e 1)rL D
FP 0

/2
which vanishes as r → 0 (Figure

5d).46 Note, however, that in this limit |R⃗| can be very large at
the resetting moment which inevitably implies frequent cases
where |R⃗|/τ0 > vmax. This in turn results in particles escaping
the optical trap and in utter breakdown of the constant return
time protocol.46 To avoid this problem, we instead consider
the more realistic constant velocity protocol which gives

⟨ ⟩ = −α
α

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑE 1L

v
L

LFP
2sinh 0

0
, for v < vmax (Figure 5d). This result

surprisingly reveals a dynamical transition: while ⟨EFP⟩ ≡ 0
when r = 0, for all r > 0 one has ⟨ ⟩ >E L v/FP , which means
that the energy spent per FPT event cannot drop below that
which is required to drag the particle directly to L at a constant
velocity v. Setting v = vmax in the above bound gives

γ⟨ ⟩ >E L2 /FP , which does not depend on laser power or
return velocity.

In this study, we have demonstrated a unique and versatile
method to realize experimentally a resetting process in which
many parameters can be easily controlled. To test our platform,
we first used it to experimentally corroborate existing
theoretical predictions, which in turn motivated experimental
and theoretical study of novel and more realistic aspects of
diffusion with stochastic resetting. Of prime importance in this
regard is the energetic cost of resetting,66−68 which we have
characterized in both the steady-state and first-passage settings.
Combining analytically derived expressions with the physics of
resetting via HOTs then surprisingly revealed lower bounds on
the energy spent per resetting for steady-state and first passage
events. Our results were based on eqs 3 and 7, which are
general and can be used as a platform to extend our findings to
a wide range of stochastic motions, resetting time distributions,
return protocols, and arbitrary dimensions. In addition, our
setup can be easily adapted to experimentally explore regimes
that are well beyond the reach of existing theories of stochastic
resetting, e.g., multibody systems with strong interactions.
These will be considered elsewhere.
Finally, we note that the optical trapping method used

herein is far from being the most efficient way to apply force to
a colloidal particle. In fact, in our experiments we used 1 W of
power at the laser output to create a trap of k = 30 pN/μm for
a silica bead of radius a = 0.75 μm. For experiments with a
constant return velocity v = 0.8 μm/s and resetting rate r =
0.05 s−1, the average return time was ⟨τ(R)⟩ = πα0

−1v−1/2 =
3.68 s, where the average was done with respect to ϕ(t) using
eq 3. This translates to an average energy expenditure of

τ⟨ ⟩ = ⟨ ⟩ = ±E R( ) 3.68 0.05 J per resetting event. In
contrast, the work done against friction to drag the particle
at a constant velocity v for a distance R is given by Wdrag = γvR
where γ = 6πηa is the Stokes drag coefficient. Taking averages,
we find τ πα⟨ ⟩ = ⟨ ⟩ = −R v R( ) /20

1 . The work required per
resetting event is then given by ⟨Wdrag⟩ = γv⟨R⟩ = πα0

−1γv/2,
which translates into 3.4 × 10−20 J or 8.3kBT per resetting
event. We thus see that ⟨Wdrag⟩ ≪ ⟨E⟩, i.e., that the work
required to reset the particle’s position is orders of magnitude
smaller than the actual amount of energy spent when resetting
is done using HOTs. Developing energy-efficient resetting
methods is a future challenge.
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Figure 5. (a) Schematic illustration of a first-passage experiment. The
target is a virtual absorbing wall. (b) Projection of the particle’s
trajectory onto the x-axis. The position of the wall is marked as a solid
line. Returns are marked in red (return time τ0 = 3.79 s), and waiting
periods are marked in green. The first two first-passage times are
marked by T1 and T2. (c) Mean FPT to the wall vs the resetting rate
for (i) noninstantaneous returns with τ0 = 3.79 s and (ii)
instantaneous returns (τ0 = 0). Theoretical predictions (eq 6, solid
lines) are in good agreement with experimental data (symbols). (d)
Energy cost per first-passage event for the constant time (blue, τ0 =
3.79 s) and constant velocity (green, v = 0.8 μm/s) return protocols.
For a fixed laser power, the energetic cost of the constant velocity
protocol is bounded from below. In the constant time protocol, we
have dashed the range of resetting rates where the average return
velocity is greater than v.46 The latter cannot exceed vmax, thus
bounding the energy cost of the constant time protocol.
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