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Topologically protected steady cycles in an icelike mechanical metamaterial
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Competing ground states may lead to topologically constrained excitations such as domain walls or quasipar-
ticles, which govern metastable states and their dynamics. Domain walls and more exotic topological excitations
are well studied in magnetic systems such as artificial spin ice, in which nanoscale magnetic dipoles are placed on
geometrically frustrated lattices, giving rise to highly degenerate ground states. We propose a mechanical spin-ice
constructed from a lattice of floppy, bistable square unit cells. We compare the domain wall excitations that
arise in this metamaterial to their magnetic counterparts, finding that new behaviors emerge in this overdamped
mechanical system. By tuning the ratios of the internal elements of the unit cell, we control the curvature and
propagation speed of internal domain walls. We change the domain wall morphology from a binary, strictly
spinlike regime, to a more continuous, elastic regime. In the elastic regime, we inject, manipulate, and expel
domain walls via textured forcing at the boundaries. The system exhibits dynamical hysteresis, and we find a
first-order dynamical transition as a function of the driving frequency. We demonstrate a forcing protocol that
produces multiple, topologically distinct steady cycles, which are protected by the differences in their internal
domain wall arrangements. These distinct steady cycles rapidly proliferate as the complexity of the applied
forcing texture is increased, thus suggesting that such mechanical systems could serve as useful model systems
to study multistability, glassiness, and memory in materials.
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I. INTRODUCTION

Mechanical metamaterials are often created by compat-
ible coupling of unit cells that exhibit a floppy mode, so
as to produce a desired global deformation [1]. This design
strategy has been employed to create materials exhibiting
auxetic responses [2–4], collective pattern transformation
[5–10], multistable structures [11,12], violations of mechani-
cal reciprocity [13], and simple programmability [14,15]. Any
incompatibility in cell arrangement implies geometric frustra-
tion [16–18]. Understanding how local frustration affects the
global response is crucial, not only to avoid frustration which
may hinder some functionality, but more interestingly for the
controlled incorporation of frustration, which enables novel
functionality [1]. For example, taking periodic or nonperi-
odic compatible mechanical metamaterials [15], topological
defects may be introduced by rotating individual unit cells,
and are useful for steering stresses along designed trajectories
[19–21]. Frustration between competing antiferromagnetic
ground state orientations has been exploited to produce pro-
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grammable hysteresis in perforated elastic sheets [14], and
frustration was found to generate multiple complex chiral
patterns in triangular networks of beams [6]. In general, meta-
materials incorporating frustration can often accommodate the
conflicts in surprising ways, inducing complex and potentially
useful mechanical responses.

The design of new properties emerging from frustration
[22,23] has also been extensively studied in engineered mag-
netic nanomaterials based on the ice rule [24,25], and called
artificial spin ice (ASI) [26–28]. ASI can be helpfully modeled
as sets of classical Ising spins arranged along the edges of
a lattice, where each spin lies in the plane of the lattice and
points away from one vertex and towards another [29]. It is
possible to map an ASI to a mechanical metamaterial in the
following way (see Fig. 1): We map each vertex of the ASI
to a mechanical unit cell which has a single floppy mode.
Importantly, the mechanical floppy mode is such that the
deformation of each unit-cell edge may be mapped to a bi-
nary spin within a ground-state ASI vertex. Neighboring cells
that attempt to adopt incompatible floppy modes create local
stress, raising the energy of the metamaterial. Thus, the rules
for reducing or manipulating frustration in icelike systems
relate to the rules of stress compatibility in metamaterials.
However, we emphasize that the latter are still continuum,
elastic systems. Therefore, we expect that mechanical spin-ice
systems, unlike their magnetic counterparts, will accommo-
date the effects of frustration in ways that are not afforded to
a truly binary system, leading to novel phenomenology.
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FIG. 1. Bistable mechanical unit cell and ground state configu-
rations of the elastic network. (a) Square mechanical cell composed
of four right triangles. The cell is constructed from eight framework
(k1,black), four interaction (k2,blue), and four compressive (k3,red)
springs with stiffness k1, k2, and k3 and relaxed lengths l1, l2 = √

2l1,
and l3 < 2

√
2l1, respectively. (b) Energy as a function of the right

triangle rotation angle θ for l3/l1 = 0.95 × 2
√

2. The undeformed
state (red) and the two ground states (green) are denoted by solid
squares. (c) Ground state of a 3 × 3 network. A single unit cell is
highlighted in green. (d) Mapping of the unit cell displacements to
binary spins within square ASI.

In this paper, we put forward the first step in a
broader program to relate concepts and models between spin
systems and mechanical metamaterials. Here we begin with
the simplest geometry—a two-dimensional mechanical ana-
log of square ice [30–32]. First we explore static configura-
tions of the metamaterial, which we show may be tuned from
a binary, pseudospin behavior to a continuous response. Then
we go on to analyze the response to external driving. A novel
and crucial property of our mechanical metamaterial is the
possibility of manipulating it by acting on its boundary. Mag-
netic systems are typically driven by using a bulk magnetic
field [33–37] which acts on all the spins at once. In contrast,
for our mechanical system, it is natural to push and pull on the
faces of the unit cells at the metamaterial boundaries. When
driven in a compatible way at the boundaries, our mechan-
ical metamaterial exhibits a dynamical phase transition from
asymmetric to symmetric hysteresis loops, as a function of the
driving frequency, as well as the existence of a wide variety of
distinct, topologically protected steady cycles under textured
driving protocols. This nontrivial dynamics arises from the
topology and motion of domain walls in the system and could
be developed as a dynamical form of memory [38–40].

II. MECHANICAL SPIN ICE

We design elastic networks to mechanically mimic square
ice. Four rigid right triangles, combined as a square, ex-
hibit a floppy mode in which all the triangles may freely

rotate together by some arbitrary angle θ without stretching
any bonds [see Fig. 1(a)]. This general rigid mechanism is
the basis for a variety of metamaterial designs [1], such as
auxetic and chiral metamaterials [3,4,9], metamaterials with
propagating internal domain walls [10], and also pattern-
transforming perforated elastic sheets [5,7,14]. If the face
nodes where the triangles meet are treated as pseudospins,
then this global mechanism maps to the ground states in mag-
netic ASI [Fig. 1(d)], for which each vertex has two opposing
spins pointing inwards and two spins pointing outwards. This
“ice-rule” constrains the ground states of spin ices to compati-
ble combinations of vertices with zero topological charge, that
is, the number of spins pointing towards the vertex equals the
number of spins pointing away from the vertex [26].

Our square cell is composed of three types of springs
[Fig. 1(a)]. Two are standard in assuring the floppy modes:
“Framework springs” of stiffness k1 and relaxed length l1
form the boundary of the square, while “interaction springs”
with stiffness k2 and relaxed length l2 = √

2l1 connect the
four faces, completing the four right triangles. In ASI, spins
are strictly binary, with magnetization per spin that can point
in two possible directions but which is fixed in magnitude
[26,27]. However, in mechanical metamaterials the pseu-
dospin magnitudes may vary continuously, and in typical
designs the undeformed state [θ = 0 in Fig. 1(a)] with all
spins equal to zero is the unique ground state. Furthermore,
deformations may continuously vary over large length scales,
so that crisp, topological-defect structures do not appear
spontaneously. Consequently, usually frustration comes into
play only when a mechanical system is driven [10,15,19,20].
To obtain bistability, we introduce diagonal “compressive
springs” with stiffness k3 and length l3. By requiring
l3/l1 < 2

√
2, the square cells experience a local compressive

stress that causes them to act as bistable hysterons [38], with
two states ±θ∗ [Fig. 1(b)]. Each edge of the square cell prefers
to point in or out by some fixed magnitude, causing the overall
metamaterial to mimic a spin ice with discrete states. In order
for the compressive springs and the framework springs to
simultaneously achieve their relaxed lengths, the geometry de-
termines the deflection angle to be θ∗ = cos−1 [l3/(2

√
2l1)].

We consider square mechanical metamaterials composed
of Lx columns and Ly rows of bistable square cells, and we
take Lx = Ly. The low-energy, metastable configurations of
this metamaterial are governed by tuning the stiffnesses of the
three spring types used to construct the unit cell, of which
one can choose two independent dimensionless ratios. For
simplicity, we adopt units such that k1 = 1, so that the val-
ues of k2 and k3 indicate the dimensionless relative stiffness
of the interaction and compressive springs compared to the
framework springs.

As in the ice-rule-obeying ASI, we have two “antiferro-
magnetically” ordered ground states [Fig. 1(c)] in which cells
alternate orientations. We quantify the order in the system
using the following staggered magnetization:

Mαβ = (−1)α+β (�xαβ − �yαβ )

4δ
, α = 1 . . . Lx, β = 1 . . . Ly,

(1)
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FIG. 2. Defect and domain wall morphology of metastable states quenched with free boundary conditions as a function of the dimensionless
stiffness k2 of the interaction springs for lattices size Lx = Ly = 30. The compressive dimensionless stiffness is set to a large value k3 = 5 for
all cases. (a–d) Strains in the network for the framework and interaction springs (not shown are the diagonal compressive springs which are
all nearly relaxed). (e–h) Staggered magnetization Mαβ for the corresponding configurations. As k2 is increased, the domain wall curvature is
reduced and the gradients in the magnetization along the boundary between competing orientations become more smooth.

where �xαβ is the width of the unit cell, �yαβ is its height, and
δ = l1 sin(θ∗) is the displacement amplitude of the face nodes
in the ground state [Fig. 1(a)]. M has value 1 on all the cells of
one ground state, −1 on the other, and 0 on undeformed cells,
and might be greater than 1 under elastic deformation. Then,
the globally averaged magnetization is

M(t ) = 1

LxLy

Lx∑

α=1

Ly∑

β=1

Mαβ (t ). (2)

III. METASTABLE CONFIGURATIONS

We numerically simulate our metamaterial within an over-
damped dynamics, subsuming any physical viscosity in our
definition of time, see Appendix A. In the numerical sim-
ulations shown below we use l3/l1 = 0.95 × 2

√
2, so that

θ∗ = 18.2◦ and δ/l1 = 0.31.
Starting from a neutral state M = 0 where all cells are

square, the system relaxes into metastable configurations
corresponding to domains of different orientation of Mαβ ,
separated by domain walls; see Fig. 2. Different low-energy,
metastable configurations of the metamaterial are obtained
when uniformly distributed, random perturbations �xi,�yi ∈
[−χ, χ ] are applied to each node of the lattice (here
χ/l1 = 0.4). Distinct minima are then found by repeating the
simulation for different random initial conditions.

By gauging the dimensionless interaction stiffness k2,
we can control how the metamaterial mimics its binary
counterpart and therefore whether its excitations match the
topologically charged vertex configurations characteristic of
ASI [30–32]. Moreover, with our continuous, elastic system,
we can also investigate regimes that go beyond strictly binary

behavior, evincing new phenomena that would be absent in
magnetic ASI.

First, consider k3 � 1 � k2. The large value of the com-
pressive stiffness k3 constrains the corners of each unit cell
to move inwards, so that the sides of the square unit cell have
length less than 2l1. Therefore, to relax the framework springs,
the four nodes at each face need to buckle in or out with
amplitude ±δ. For such configurations, only the interaction
springs are strained: applying a spin approximation, 24 config-
urations of the unit cell are possible (see Appendix B, Fig. 7).
The ice-rule is obeyed for two of these configurations and
they correspond to the energy minimum, as in Fig. 1(b). The
ice-rule is violated by excitations for which two neighboring
faces both point inwards or outwards, causing the interaction
springs to be strained. We note that due to the action of the
compressive springs compressing the interaction springs costs
more energy than extending them, and this alters the vertex
energy hierarchy compared to ASI (see Appendix B). When,
k2 ∼ 1, the pseudospin approximation breaks down and a
wider variety of continuous excitations may appear in which
stresses are shared between both the framework springs and
the interaction springs.

The dependence of the excitation morphology on the di-
mensionless interaction stiffness k2 is demonstrated in Fig. 2.
The compressive stiffness is large, with value k3 = 5 through-
out, and k2 varies from 0.01 to 2. An experimental realization
would require component springs with a variable stiffness
range of order 500 : 1, which may readily be achieved with
standard materials. For a small dimensionless stiffness k2 =
0.01 of the interaction springs, the domain walls have shapes
very similar to ASI walls: one cell thick, and made of con-
figurations in which two neighboring faces of the same cell
point in the same direction [41]. We also see other topological

023174-3



MERRIGAN, NISOLI, AND SHOKEF PHYSICAL REVIEW RESEARCH 3, 023174 (2021)

defects, especially at the edges of the lattice, corresponding to
configurations in which three faces deform in the same direc-
tion, and are analogous to ASI monopoles (see Appendix B,
Figs. 7 and 8). This suggests that such topological charges
may be expelled toward the boundaries of the system, sim-
ilarly to what was shown for colloidal ice [18,43–45]. As
k2 increases, such “monopoles” become more energetically
costly and appear within the domain walls. The curvature of
the latter grows smaller with increasing k2. Domain walls
seen in Fig. 2(b), with k2 ∼ 0.05, resemble domain walls
seen in experiments on square, magnetic ASI [30,31]. As k2

increases further, the domain walls become straight, and they
become wider with strains distributed over neighboring rows
or columns of unit cells.

During the energy quench, all domain walls tend to move
and straighten for some time until stabilizing at some average
curvature imposed by the value of k2. Further, any domain
walls that connect two adjacent edges of the lattice and start
near a corner tend to be expelled. Corner spanning domain
walls are expelled at a decreasing speed as k2 is decreased,
until k2 ∼ 0.18, where the corner spanning domain walls be-
come stationary and are no longer expelled (see Appendix
C, Fig. 9). At dimensionless values of k2 which approach 1,
corner spanning domain walls tend to be eliminated rapidly,
and the resulting configurations only contain straight domain
walls, such as in Fig. 2(d).

IV. DYNAMICAL HYSTERESIS

We now investigate how this rich topological zoology af-
fects dynamics. In square spin ice, monopoles and domain
walls can be rearranged by external magnetic fields. While an
analog of a bulk magnetic field acting on all unit cells at once
is not readily available for mechanical systems, we can focus
on the experimentally realizable case of forcing the bound-
aries of the mechanical metamaterial. First, we apply forces to
the nodes of the cells at the boundary in a compatible way, i.e.,
by alternating the sign of the force among consecutive nodes
(see inset of Fig. 3) and modulating the intensity harmonically
in time F = F0 sin(ωt ), where F0 is the force amplitude and
ω is the dimensionless driving frequency. The characteristic
relaxation time for the framework springs, T1 = γ /k1 = 1,
where γ is the linear drag coefficient, is taken as the unit of
time (see Appendix A), and we study the dependence on the
dimensionless driving frequency approaching the quasistatic
limit, ω � 1. When driven in such a manner, the system
undergoes a hysteresis cycle, with the shape of the hysteresis
cycle governed by the dimensionless driving frequency ω,
see Fig. 3. When the intensity of the force F (t ) overcomes a
coercive value Fc, the boundary cells all snap from Mαβ = +1
to Mαβ = −1, creating a domain wall loop sitting just inside
the edge of the metamaterial. Once formed, this loop starts
to contract to reduce its overall length and energy, see Fig. 3
inset. The subsequent internal dynamics depend on how the
driving frequency ω compares to the speed of the internal
domain wall contraction.

At high ω, the boundary force oscillates too rapidly for the
system to mechanically respond, leading to a shallow penetra-
tion depth of stressed cells and leaving the bulk unchanged,
with M(t ) ∼ 1 at all times. For less rapid forcing, edge cells

FIG. 3. Frequency dependence of the hysteresis loops for com-
patible, cyclic forcing at the boundaries of the lattice, which tries
to switch the entire metamaterial from M = +1 to M = −1 and
back. Here Lx = Ly = 25 and the dimensionless interaction stiffness
is k2 = 0.2. The cycle proceeds counterclockwise along the loop.
Inset: Snapshot of intermediate point on the hysteresis loop for ω =
1.2 × 10−6 and the applied forces at the boundary nodes (red arrows).
Videos of the cycles for ω = 3.2 × 10−5, 4.5 × 10−6, 3.5 × 10−6,
and 1.2 × 10−6 are provided in Supplemental Material videos 1–4
[42].

invert, creating a circumferential domain wall. This domain
wall begins to contract toward the center of the system, but it
is subsequently annihilated by a second domain wall forming
in the second half of the cycle, preventing it from penetrating
into the bulk. Sample time series are shown in Appendix D,
Fig. 10, and corresponding videos are provided in Supple-
mental Material videos 1–4 [42]. The fact that the second
loop catches up with the first is evidence of an attractive
interaction between the two loops, since otherwise each loop
would follow the exact same trajectory, differing only by a
time delay. Once the driving period τ = 2π/ω is just large
enough for the first domain wall to propagate inwards without
being caught by the subsequent domain wall, a first-order
dynamical transition appears at which the hysteresis loops
change abruptly from being asymmetric, to being symmetric
about M(t ) = 0. For the k2 = 0.2 hysteresis loops shown in
Fig. 3, the transition occurs as the driving frequency is reduced
from ω = 4.5 × 10−6 to ω = 3.5 × 10−6. This behavior re-
sembles the dynamic phase transition studied in kinetic Ising
models driven at finite frequency by an external magnetic field
[33–37], except that the transition we observe appears to be
discontinuous. We also note that it is natural to inject and
manipulate domain walls via the boundaries of a mechanical
metamaterial, whereas magnetic systems are typically driven
via a bulk magnetic field. In the quasistatic limit, ω → 0, the
forcing period τ is far larger than the time needed for the
internal loop to contract. Thus, the hysteresis loop is square.

We quantify the hysteresis through its normalized area
A(ω) = 1

4F0

∫
MdF and the time-averaged magnetization

over one period Q(ω) = 1
τ

∫
Mdt [33–37]. Q = 0 when the

cycle is symmetric, and Q 
= 0 indicates an asymmetric cycle.
In Figs. 4(a) and 4(b), we plot A and Q vs. ω for a set of
k2 values ranging from the binary, spin-ice limit to the elastic
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FIG. 4. Frequency dependence of the normalized area A (a) and
the time-averaged magnetization Q (b) for the compatible driving
protocol, and compared for varying dimensionless interaction stiff-
ness k2. The characteristic timescales are increased by reducing
the interaction strength k2. (c, d) Finite-size scaling of A and Q
for square lattices Lx = Ly = L and k2 = 0.5, confirming that the
circular domain wall loops contract at a rate proportional to their
curvature.

regime. For k2 � 0.1, the dynamic transition from asymmetric
to symmetric cycles is marked by a discontinuous jump in
both A and Q, with Q remaining zero below the critical fre-
quency ωc. ωc can be related to τc, the time it takes a circular
domain wall to collapse, as ωc = π/τc. When ω < ωc full
inversion is achieved by the collapse of the circular domain
wall before a new half cycle begins. When ω > ωc a new
domain wall is created before the previous can collapse, and
M doesn’t fully invert sign, leading to asymmetry.

Another interesting frequency is the resonant frequency
ωr , which corresponds to the maximum in the area A. Here,
just after reaching orientation M = −1, the system is driven
to immediately return to orientation M = +1, once again.
The maximum area, resonant frequency loop for k2 = 0.2,
ωr = 1.28 × 10−6 is shown in Fig. 3, and a time series
of the collapse of the circular domain wall is shown in

Appendix D, Figs. 10(m)–10(p), and in Supplemental Mate-
rial video 4 [42].

A simple scaling analysis clarifies the significance of the
timescale τc, which is the timescale which sets the values
of both ωc and ωr . M is a nonconserved order parameter
undergoing dissipative dynamics, so we expect model-A dy-
namics to describe the domain wall motion [46]. For a circular
domain wall, it has been shown that the circle contracts at a
rate proportional to its mean curvature: dR

dt ∝ 1
R [47,48]. Con-

sequently, the rate of change of the area inside the circle v =
d (πR2 )

dt ∝ R dR
dt is constant. The total time for the circle to con-

tract on itself is then approximately τc ∝ L2/v. In Figs. 4(c)
and 4(d), we confirm this time dependence by performing
finite-size scaling of the hysteresis loops for square lattices
of linear sizes L = 9–33. The hysteresis loop areas A and
time-averaged magnetization Q collapse when plotted against
the rescaled time ωL2, confirming that the circular domain
walls contract at a speed proportional to their curvature.

V. TEXTURED FORCING PROTOCOL

We have demonstrated how the domain wall dynamics
control the probe response of the system in the very simple
case of a compatible drive. However, our system allows us
to “inject” desired domain walls for different dynamical re-
sponses, by finely controlling the detail of the applied force
pattern. For instance, wherever we skip the alternation of sign
of the applied force along the boundary we inject a domain
wall. This can only be done an even number of times, and
each will correspond to a domain wall ending at the interface.

In the compatible forcing protocol, only one static
metastable configuration matches the forcing texture at max-
imum (minimum) amplitude of the textured boundary forces,
at times such that ωt = π/2 (ωt = 3π/2), namely, the global
ground state M = +1 (M = −1). Many such matching,
metastable states are made possible for an applied forcing
texture composed of alternating Mαβ = ±1 segments (see
boundary arrows in Fig. 5). In Appendix E, we demonstrate
that the number of these states is given by the Catalan numbers
[49], which grow nearly exponentially as a function of the
number of alternating force segments. Below, we demonstrate
that different initial conditions with different internal domain
wall configurations may be attracted to topologically distinct
steady cycles. These cycles are always between a subset of the
static metastable configurations (and their inverses) for which
the boundary configurations and the arrangement of internal
domain walls match compatibly with the forcing texture at its
extremum values.

First, we study a relatively simple textured forcing pro-
tocol. Figure 5 illustrates three steady cycles which appear
when the system is driven with 8 alternating forcing seg-
ments. Metastable states which match this forcing texture
must contain 4 internal domain walls. There are 14 such
static configurations: three of these distinct states appear in
the second column of Figs. 5(b), 5(f) and 5(j), while their
inverses appear in the last column: Fig. 5(h) is the inverse of
Figs. 5(b), Fig. 5(d) is the inverse of Fig. 5(f), and Fig. 5(l)
is the inverse of Fig. 5(j) rotated by π . There are, in fact, six
states with nondegenerate domain wall configurations, shown
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FIG. 5. Time series snapshots for three steady-state cycles due to textured driving of the boundaries, with Lx = Ly = 35 and k2 = 0.5.
Four central segments (red arrows) are switched from Mαβ = +1 to Mαβ = −1, whereas four corner segments (purple arrows) switch from
M = −1 to M = +1. Each column shows snapshots for a fixed phase of the textured forcing, with ωt = 0, π/2, π , and 3π/2 (the Mαβ color
bar is the same as in Fig. 2). Starting from different initial metastable states, the metamaterial may be attracted to Cycle 1 (a–d), Cycle 2 (e–h),
or Cycle 3 (i–l). (m) Magnetization M(t ) for the three cycles with driving frequency ω = 6.28 × 10−7. Cycle 1 (blue) and Cycle 2 (green)
are asymmetric Q = ±1 and related by a phase shift of π , while Cycle 3 (red) is symmetric Q = 0. (n) Frequency dependence of Q for six
different initial conditions, one of which reaches Cycle 1 (blue), three reach Cycle 2 (green), and two reach Cycle 3 as ω → 0.

in Appendix E, Fig. 11, and all 14 topologically distinct states
may be generated by applying π/2 rotations to these six
states.

We tested a large number of different initial conditions: for
each initial condition we imposed eight alternating Mαβ = ±1
segments as fixed boundary conditions, thus giving one of
the 14 topologically distinct metastable configurations as an
initial condition. At high frequencies, the domain wall pene-
tration depth is shallow, and a variety of different steady states
appear, reflecting the different internal domain wall config-
urations of the initial conditions. These can be seen by the
different Q values at large ω in Fig. 5(n). Interestingly, in the

quasistatic limit, the internal domain wall configurations are
erased, yet the system tends to one of three steady-state M(t )
times series, each giving a signature Q value. Figure 5(m)
shows these three distinctive magnetization time series. The
panels in each column show the magnetization configurations
Mαβ at times ωt = 0, π/2, π, and 3π/2 in the steady state,
when the textured forcing amplitude is zero or extremal.

For Cycle 1, M(t ) varies asymmetrically between 0.3 and
1, with time-averaged magnetization Q = 0.6. In Cycle 2,
M(t ) varies between −0.3 and −1, and Q = −0.6. This cycle
mirrors Cycle 1, but with a phase shift of π . This phase
shift can be understood by comparing the second and last

023174-6



TOPOLOGICALLY PROTECTED STEADY CYCLES IN AN … PHYSICAL REVIEW RESEARCH 3, 023174 (2021)

columns of Fig. 5, when the force is at it maximum (mini-
mum) value. There are two distinct topological configurations
that match the boundary conditions, one with domain walls
spanning the four corners [Fig. 5(b) or Fig. 5(h)], and another
with semicircular loops on each side [Fig. 5(d) or Fig. 5(f)],
and upon reversing the sign of the boundary force these two
configurations transform into one another. Finally, Cycle 3 is
symmetric, with M(t ) varying between ±0.3, giving Q = 0.
This cycle alternates between inverse variants of a configu-
ration with one long domain wall spanning the center and
two corner spanning domain walls [Fig. 5(j) or Fig. 5(l)].
Cycle 3 does not have a phase-shifted counterpart. Rotations
of the configuration in Fig. 5(j) give four distinct domain wall
arrangements, so we consider Cycle 3 to have four variants,
giving a total of six distinct steady-state cycles arising for this
simple textured forcing protocol.

For the compatible drive studied in Sec. IV, starting from
an initial condition with complicated internal domain wall
configurations will not lead to multiple cycles. When com-
patibly cycling initial states containing several domain walls,
domain walls within the starting configurations are always
annealed away after some transient number of cycles. Even-
tually, the system always returns to the same hysteresis loops
of the previous section, and all memory of the starting state
is erased. The duration of long-lived transients grows longer
for larger ω. Similarly, if the eight-segment driving protocol
of Fig. 5 were applied to a random configuration containing
some complex domain wall pattern not necessarily compatible
with the applied force, one of the six distinct steady-state
cycles will eventually be reached.

The ultimate cycle a given initial condition is attracted to
depends critically on the initial domain wall topology: for
example, an initial condition needs to have at least one domain
wall spanning the width of the metamaterial to access Cycle 3.
However, the initial topology does not guarantee the resulting
cycle that the state will be attracted to, and finer details of the
internal domain wall curvatures and small variations in the
internal configuration determine the cycle which a particular
initial arrangement is attracted to. For example, we found that
different initial conditions each with two long domain walls
[see Appendix E, Fig. 11(d)] sometimes reach Cycle 3, and
sometimes reach Cycle 1 or Cycle 2. Finer details of the
internal domain wall arrangements can also affect the stability
of the distinct cycles. We note that Cycle 3 appears to be
less stable: for some initial conditions, it appears to be the
steady state over a wide range of frequencies, but then an
abrupt switch may occur to Cycle 1 or Cycle 2. Except for
the anomaly at ω ∼ 10−7, examples shown in Fig. 5(n) (red
curves) prefer Cycle 3 at least down to ω ∼ 10−8. Sample
videos of Cycle 1 and Cycle 3 are given in Supplemental
Material videos 5 and 6 [42].

Finally, we demonstrate that the variety of the distinct
hysteresis cycles can be easily increased by adding more
alternating forcing segments along the boundary. Doubling
the number of boundary defects, we tested a forcing protocol
with 16 alternating Mαβ = ±1 segments along the boundary.
Compatible initial conditions for this forcing protocol must
have eight internal domain walls, and there are a total of 1,430
distinct ways to place the domain walls (see Appendix E).
Among these, each state has some trivial degeneracy of 1,

2, 4, or 8 from rotations or reflections (see Appendix E,
Fig. 12). A simple lower bound may be attained by as-
suming the maximum degeneracy for each state, implying
that there are at least 1430/8 ≈ 178 different domain wall
configurations.

By fixing the boundary conditions and quenching the en-
ergy as in Sec. III, we manually identified 63 distinct states
of a sample set of 2000 trial cases, and we expect additional
rare states would be found for large ensembles or could be
directly imposed on the metamaterial. Snapshots of these en-
ergetically distinct domain wall configurations are given in
Appendix E, Figs. 13 and 14. Taking these states as initial con-
ditions, and driving them at low frequency ω = 1.9 × 10−6,
we observe many distinct steady-state cycles, eight examples
of which are shown in Fig. 6. Two panels for each cycle
show the topologically distinct configurations which appear
at the maximum and minimum textured forcing amplitude.
Some of the cycles, like those shown in Figs. 6(a), 6(f) and
6(g), are relatively common and reached by many of the trial
initial conditions. Others, like Figs. 6(b)–6(e) are more rare.
Sample videos of the cycles corresponding to Figs. 6(a)–
6(d) are provided in Supplemental Material videos 7–10 [42].
Additional cycles occurred which are rotational and phase-
shifted counterparts to these example cycles, and we expect
to find more cycles by testing a larger ensemble of initial
configurations.

VI. DISCUSSION

We have demonstrated that our mechanical analog of
spin-ice exhibits real-space topological defects, similarly to
magnetic and other realizations of ASI. These domain walls
tend to escape to the system boundaries, but they can some-
times be immobilized depending on the ratios of spring
stiffnesses used to construct the metamaterial or on imposed
boundary conditions. As the dimensionless interaction stiff-
ness k2 is reduced, the domain walls become slower and
more curved, until their motion ceases in the icelike limit
k2 � k1. Uniform inversion of the boundaries creates circular
domain wall loops which contract upon themselves, setting
up a dynamic hysteresis cycle between the competing ground
state configurations. There appears to be a first-order dy-
namic phase transition associated with this uniform driving
protocol. The system exhibits a novel dynamic complexity
when textured forcing is applied at the boundary: different
initial configurations of the network are attracted to multiple,
topologically distinct steady cycles. The number of cycles
is closely related to the multiplicity of topologically dis-
tinct static states consistent with the texture of the boundary
forcing. Further, the possibility of many distinct ways of con-
necting domain walls inside the material protects these cycles:
once a steady cycle is achieved, the system cannot easily be
pushed into a new cycle because of the large energy barriers
which would need to be crossed to change the positions of
domain walls from their current arrangement.

This potential for many steady cycles arising for a single
driving texture relies on the ability to manipulate the boundary
of the metamaterial, unlike ASI and other systems which are
typically driven by bulk fields. Thus, our mechanical spin-
ice system opens up further exploration of rich dynamical
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FIG. 6. (a–h) Topologically distinct domain wall configurations which occur at the maximum and minimum values of the textured forcing,
ωt = π/2, 3π/2, with 16 alternating Mαβ = ±1 textured forcing segments along the boundary (red and purple arrows). Lx = Ly = 45 and
k2 = 0.5, and the cycles were found for fixed small frequency ω = 1.9 × 10−6 (the Mαβ color bar is the same as in Fig. 2). (i) Magnetization
time series corresponding to the snapshots shown above illustrating the rich variety of steady-state hysteresis cycles arising from this textured
forcing protocol.

phenomenology which have no counterparts in magnetic sys-
tems. Our work opens a new direction of using periodic
prestressed mechanical metamaterials to generate complex
energy landscapes, which in turn lead to multiple steady
states. It should be fruitful to explore additional driving proto-
cols, as well as modified lattice geometries. Additional rich
hysteresis behavior could be generated by driving opposite
pairs of the boundaries out of phase from one another, or
driving different sides with different amplitudes. Specific do-
main wall configurations could be imposed by programed
protocols that manipulate parts of the boundary one by one
in a specific sequence. Moreover, the degeneracies of distinct

metastable configurations inside the material can be engi-
neered by changing the shape of the boundary or the spacing
of forcing defects along the boundary, possibly allowing for
more rich behaviors. Finally, it should be interesting to con-
sider more elaborate spin-ice mechanical metamaterials, but
based on lattices that are inherently frustrated and thus have
extensively degenerate ground state configurations [50,51].
Studying such lattices could promote the understanding of
the complex dynamics and memory of amorphous solids and
other glassy systems. As such, it will be useful to study the
defects and possible dynamic hysteresis in such generalized
mechanical spin-ice systems.
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APPENDIX A: COMPUTATIONAL METHODS

Our mechanical metamaterial is modeled as an elastic
spring network simulated using overdamped dynamics or the
method of steepest energy descent. For a network of nodes
with equal mass m, the overdamped equation of motion for a
given node with position ri is

dri

dt
= 1

γ

∑

〈i j〉
−ki j (ei j − li j )r̂i j, (A1)

where the spring connecting node i to node j has spring
constant ki j , relaxed length li j , and current extension ei j =
|ri − r j |, and γ is the linear drag damping force coefficient.
We adopt units such that relaxation timescale T1 = γ /k1 = 1,
and assume the system has an overdamped response such that
the viscous damping timescale is much faster than the unit
time m/γ � γ /k1 = 1. In the characteristic relaxation rate
for interaction springs is T2

−1 = k2 and for the compressive
springs is T3

−1 = k3. Thus, the fastest relaxation rate in the
system is given by k3

−1 = 0.2. We integrated the equations of
motion with variable time step �t = 0.01 − 0.1. For charac-
terizing the various metastable conditions in Sec. III, we use
free boundary conditions, with no constraints or additional
forces on the nodes. In Secs. IV and V, we drive the lattice
from the boundary by applying additional forces to the bound-
ary nodes, perpendicular to the boundary, with magnitude
|Fi| = F0 sin(ωt ), and alternating sign as determined by the
desired driving texture, taking F0 = 1.5 throughout.

APPENDIX B: SPIN ICE VERTEX CLASSIFICATION

Within ASI systems, spin configurations at a vertex are
classified by their energy and their topological charge q,
which is defined as the number of spins pointing into the
vertex minus the number of spins pointing away from the
vertex. Similarly, in the limit that the interaction springs are
much weaker than the framework springs, and both are much
weaker than the compressive springs, k2 � 1 < k3, we can
obtain an approximate vertex hierarchy in energies for the
square unit cells by treating the four faces of the unit cell
as pseudospins. In this limit, we require that the two diag-
onal compressive springs and the eight framework springs
must all be fully relaxed. This means that each of the four
face nodes of the unit cell must bend inwards or outwards
by an amount ±δ = ±l1 sin(θ∗). As discussed in the main

(a) (b) (c)

(d) (e) (f)

FIG. 7. (a–f) Idealized vertex configurations for the square unit
cell showing the six possible vertex types in order of increasing
energy. Solid lines show the framework springs, dotted lines show the
interaction springs, and dashed lines show the diagonal compressive
springs. Relaxed springs are colored green, compressed springs are
colored blue, and springs under tension are colored red. See strain
color map in Fig. 8.

text, all of the springs are relaxed when two opposing faces
of the unit cell bend inwards and the remaining two faces
bend outwards, and the total elastic energy is zero. Excita-
tions happen when two adjacent faces both point outwards
or both point inwards, causing the interaction spring con-
necting the two faces to be stretched or compressed relative
to its relaxed length l2 = √

2l1. Figure 7 shows the strain
ε on all springs for all six possible vertex configurations.
Unit cell configurations very similar to these idealized vertex
configurations appear within the bulk of the metamaterial,
as shown in Fig. 8. Due to the unit-cell geometry, the en-
ergetic cost of compressing an interaction spring is slightly
larger than the cost of stretching the same interaction spring.
For a given value of θ∗ = cos−1 (l3/2

√
2), the energy of

a single interaction spring is given by E/k2 = 0.5�l2 =
(
√

1 ± sin 2θ∗ − 1)2, where the plus sign is for a stretched

FIG. 8. Zoom on a small region for a metamaterial with k2 = 0.1
showing strains εi for the framework and interaction springs. Unit
cells which closely approximate the ideal vertex types are marked
with colored dots according to the color scheme defined in Fig. 7.
For clarity, the compressive springs are not shown.
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FIG. 9. (a–d) Time series of single corner-spanning domain wall
length as it is expelled from the metamaterial for interaction spring
stiffness k2 = 0.2. (e) Measurements of the rate of decay of the
total Mαβ = 0 contour line length marking the moving domain wall.
Colored dots correspond to panel labels (a–d). For interaction spring
stiffness k2 < 0.18 the domain wall gets stuck in place and remains
forever.

interaction spring and the minus sign for a compressed
spring. Simulations in the main text were carried out using
θ∗ = 18.2◦. Adding up the energy contribution from each
stressed interaction spring, we find the following energy hi-
erarchy for the vertices: Ea/k2 = 0, Eb/k2 = 0.1376, Ec/k2 =
0.2, Ed/k2 = 0.2626, Ee/k2 = 0.2752, and E f /k2 = 0.5252.

We may also assign the topological charges qa = 0, qb = −2,
qc = 0, qd = +2, qe = −4, and q f = +4. Note that in mag-
netic ASI, the energy for the q = ±2 and q = ±4 monopoles
is independent of the sign of the charge q, whereas this degen-
eracy is lifted due to the asymmetry between stretching and
compressing the interaction springs in our square mechanical
ice.

APPENDIX C: DOMAIN WALL SPEED

To quantify the domain wall speed, we compare the gradi-
ent descent dynamics for configurations starting with a long
corner-spanning domain wall. We use a system of size Lx =
Ly = 31, and prepare the initial configuration with a long
domain wall spanning two adjacent sides and starting just
above the diagonal of the metamaterial. During the dynamics,
the domain wall decreases its length by escaping towards
the corner of the metamaterial. In Fig. 9, we plot the time
dependence of the contour length l (t )/ld , where the diagonal
length is ld = 2

√
2Lx, of the Mαβ = 0 contours for decreasing

dimensionless interaction stiffness k2. The escape time grows
larger for decreasing k2, until below a value k2 ≈ 0.18, the
initial corner-spanning domain wall remains in place forever
without escaping to the edge. These results are consistent
with the change in the nature of the hysteresis cycles seen

FIG. 10. Steady-state time series examples for the simple,
uniform driving protocol for lattices of size Lx = Ly = 25 and inter-
action spring stiffness k2 = 0.2. Panels (a–d) show snapshots over
one period for the trivial behavior at high frequency, ω = 3.14 ×
10−4 where only boundary cells are deformed. Panels (e–h) illus-
trate the cycle at driving frequency ω = 4.48 × 10−6, just above the
critical frequency ωc. Panels (i–l) show the change in behavior at
ω = 3.49 × 10−6, just below ωc. Finally, the behavior at the resonant
frequency ωr = 1.28 × 10−6 is shown in panels (m–p).

in Fig. 4, where for k2 = 0.01–0.05, the hysteresis cycle is
always restricted to perturbations along the boundaries even
in the quasistatic limit ω → 0.

APPENDIX D: TIME SERIES FOR SIMPLE BOUNDARY
DRIVING PROTOCOL

Figure 10 illustrates several time series of the magnetiza-
tion Mαβ for the hysteresis cycles shown in Fig. 3. The first
four panels, Figs. 10(a)–10(d), show the trivial high frequency
behavior for which the domain wall never penetrates into
the bulk of the metamaterial. For a frequency slightly larger
than the critical frequency ωc, Figs. 10(e)–10(h), the domain
wall loop created on the second half of the cycle catches up
and annihilates with the first domain wall loop, creating a
quadrupolar pattern. Unit cells deep within the center of the
lattice are never flipped, keeping their magnetization value
Mαβ = +1. In contrast, for a frequency just below the critical
frequency, Figs. 10(i)–10(l), the two circular loops move con-
centrically without colliding. At the resonant frequency, ωr ,
Figs. 10(m)–10(p), the first circular loop contracts completely
just as the second circular loop is nucleated at the boundary of
the lattice. Finally, in the quasistatic limit ω → 0 (not shown),
the loops contract rapidly compared to the driving period τ ,
and so the metamaterial spends most of the time waiting in
either state M = +1 or M = −1.
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FIG. 11. Panels (a–f) illustrate the six energetically distinct states
possible for N=8 A and B segments along the boundary. Adding up
the labeled rotational degeneracies of each state (×1,×2, ×4) gives
the predicted number of distinct configurations: (8) = C4 = 14.
(g) Exact enumeration of the total possible number of topologically
distinct arrangements as a function of N (blue), as well as their upper
limit (red).

APPENDIX E: MULTIPLICITY OF TOPOLOGICALLY
DISTINCT CONFIGURATIONS

It is possible to count the multiplicity of distinct metastable
states as a function of the number N of alternating segments of
orientation A and B along the boundary. Circling the bound-
ary of the lattice, each defect marking the end of a domain
wall is a transition from A to B or from B to A. Since each
domain wall must both start and end on a boundary, each
domain wall emanating from an AB defect must terminate
at a BA defect, so that there are a total N/2 of each defect
type. If there were an odd number of defects injected along
the boundary, this would imply the existence of at least one
domain wall in between that terminates in the bulk, which is
impossible. Therefore, we know each AB transition is matched
to a BA transition, and we get a simple upper limit on the
number of states by counting all permutations between the two
sets: max(N ) = (N/2)!.

This upper limit overestimates the number of states be-
cause it includes states in which different domain walls
intersect, which is forbidden. This no-crossing restriction nat-
urally leads to a recursion relation for the number of allowed
configurations. Assume a boundary condition with N + 2 total
defects, and pick two of them to be connected. Since no
additional domain wall can cross through this wall, the system
is divided into two disjoint sections, one section containing
m = 0, 2, 4, ...N/2 unassigned defects and the other section

FIG. 12. Degeneracy levels for configurations with N = 16 al-
ternating M = ±1 segments evenly spaced along the boundary. All
configurations in this square geometry will have degeneracy 1, 2,
4, or 8. Panels (a) and (b) are nondegenerate states. Panels (c) and
(d) illustrate a state with degeneracy 2. Panels (e–h) show four
degenerate states related by rotation. The remaining panels, (i–m)
show an example of eight degenerate states.

containing N − m unassigned defects. Fixing the chosen de-
fect pair, there are (m)(N − m) possibilities. There are
N/2 pairs of nodes that can be connected to define the two
disjoint sections, and so that final number of topologically
distinct states must satisfy the recursion relation

(N + 2) =
N/2∑

m=0,2,4,...

(N − m)(m). (E1)

Let the generating function associated with the number of
states be defined as g(z) = ∑∞

n=0 (2n)zn. For convenience,
let N = 2y and m = 2x, so that the recursion relation becomes

[2(y + 1)] =
y∑

x=0

[2(y − x)](2x). (E2)

Multiplying both sides of the recursion relation by zy+1, and
then summing over y gives

∞∑

y=0

[2(y + 1)]zy+1 =
∞∑

y=0

y∑

x=0

[2(y − x)](2x)zy+1.

(E3)

Reordering the sums on the right side, the equation becomes
∞∑

y=0

[2(y + 1)]zy+1 = z
∞∑

x=0

(2x)zx
∞∑

y=x

[2(y − x)]zy−x.

(E4)
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FIG. 13. First 32 numerically sampled distinct metastable states
for N = 16 evenly spaced boundary defects, system size Lx = Ly =
45 and interaction spring stiffness k2 = 0.5. The configurations are
displayed in order of increasing total energy, from top left to bottom
right.

Invoking the generating function definition then gives

g(z) − 1 = zg2(z), (E5)

and solving this quadratic relation for g(z), we find that

g(z) = 1 − √
1 − 4z

2z
, (E6)

FIG. 14. Additional 31 numerically sampled metastable states
for N = 16 evenly spaced boundary defects, system size Lx = Ly =
45 and interaction spring stiffness k2 = 0.5. The configurations are
displayed in order of increasing total energy, from top left to bottom
right.

where the sign of the root is chosen so that limz→0 g(z) =
(0) = 1. Finally, the coefficients of the Taylor series ex-
pansion of g(z) provide the exact multiplicity for any desired
number of boundary segments N . The rapid growth of the
number of possible configurations is shown in Fig. 11(g). We
also checked that directly counting the topologically allowed
(N ) up N = 18 matches the calculated formula. Illustrations
of the resulting internal domain wall configurations are given
in Figs. 11(a)–11(f) as well as in Fig. 12.
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The generating function Eq. (E6) is, in fact, known
to be the generating function for a well known se-
ries known as the Catalan numbers [49], (2n) = Cn =

1
n+1

(2n
n

)
. For n large, the series grows asmptotically as

Cn ∼ 4nn−3/2.
Though the Catalan numbers account for the number

of topologically distinct configurations, these configurations
may be grouped by energy. The number of energetically de-
generate states depends on the shape of the boundary, as
well as on the spacing of the defects, both of which will
determine the lengths of the internal domain walls. For ex-
ample, Figures 11(a)–11(f) shows that for N = 8 there are
a total of six energy levels. The remaining topologically
distinct states are accounted for by π/2 rotations of the
ones shown in Fig. 11. For a square boundary with N/4
defects on each side, states may be related by π/2 de-
gree rotations, or by mirror reflection along the diagonal, so
that all configurations for any N have degeneracy 1, 2, 4, or
8. Examples of degenerate states for N = 16 are given in
Fig. 12.

Classifying the configurations by energy becomes exceed-
ingly difficult for increasing N . Figure 11 shows that for N =
8, the (8) = 14 topological distinct states can be grouped
into six energetically degenerate states, 2×1 + 2×2 + 2×4 =
14. For N = 12, there are (12) = 132, and we have checked
these may be grouped into 48 energetically distinct states,
8×1 + 18×2 + 22×4 = 132. For the case N = 16, (16) =
1, 430, and enumerating the energy levels becomes exceed-
ingly difficult. Since each state has a maximum degeneracy 8,
we obtain a lower bound of 1430/8 ≈ 178 distinct configura-
tions. As a check, we have simulated an ensemble of 2000
trials, using N = 16, Lx = Ly = 45, and k2 = 0.5. In each
case we start from a random state, and minimize the energy by
gradient descent. Sorting the results of these runs by energy,
we find 63 energy levels, see Figs. 13 and 14, where the states
are presented in order of increasing energy. Counting the pos-
sible rotations and reflections of these 63 groups, gives a total
of 381 of the expected 1430 configurations. The undiscovered
states presumably have higher energies, making them difficult
to generate via our energy minimization protocol.
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[45] E. C. Oğuz, A. Ortiz-Ambriz, H. Shem-Tov, E. Babià-Soler,
P. Tierno, and Y. Shokef, Topology Restricts Quasidegeneracy
in Sheared Square Colloidal Ice, Phys. Rev. Lett. 124, 238003
(2020).

[46] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, UK,
1995).

[47] J. W. Cahn and S. M. Allen, A microscopic theory for domain
wall motion and its experimental verification in Fe-Al alloy
domain growth kinetics, J. Physique Colloques 38, C7 (1977).

[48] S. M. Allen and J. W. Cahn, A microscopic theory for antiphase
boundary motion and its application to antiphase domain coars-
ening, Acta Metall. 27, 1085 (1979).

[49] R. Stanley and E. W. Weisstein, Catalan number, https://
mathworld.wolfram.com/CatalanNumber.html (2020).

[50] I. Gilbert, G.-W. Chern, S. Zhang, L. OBrien, B. Fore, C. Nisoli,
and P. Schiffer, Emergent ice rule and magnetic charge screen-
ing from vertex frustration in artificial spin ice, Nat. Phys. 10,
670 (2014).

[51] Y. Lao, F. Caravelli, M. Sheikh, J. Sklenar, D. Gardeazabal,
J. D. Watts, A. M. Albrecht, A. Scholl, K. Dahmen, and C.
Nisoli, Classical topological order in the kinetics of artificial
spin ice, Nat. Phys. 14, 723 (2018).

023174-14

https://doi.org/10.1063/1.1749327
https://doi.org/10.1021/ja01315a102
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1038/s42254-019-0118-3
https://doi.org/10.1103/RevModPhys.91.041003
https://doi.org/10.1038/nphys1853
https://doi.org/10.1088/1367-2630/14/3/035014
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevB.42.856
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1088/0305-4470/32/1/005
https://doi.org/10.1103/PhysRevE.63.016120
https://doi.org/10.1103/RevModPhys.91.035002
https://doi.org/10.1103/PhysRevLett.123.178002
https://doi.org/10.1103/PhysRevE.101.052616
https://doi.org/10.1209/0295-5075/132/47005
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.023174
https://doi.org/10.1103/PhysRevLett.97.228302
https://doi.org/10.1038/s41467-018-06631-1
https://doi.org/10.1103/PhysRevLett.124.238003
https://doi.org/10.1051/jphyscol:1977709
https://doi.org/10.1016/0001-6160(79)90196-2
https://mathworld.wolfram.com/CatalanNumber.html
https://doi.org/10.1038/nphys3037
https://doi.org/10.1038/s41567-018-0077-0

