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Persistent collective motion of a dispersing
membrane domain
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ABSTRACT We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion
includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much
faster than the latter because the diffusion coefficient of the center of mass is inversely proportional to the number of particles.
However, in the case of membrane inclusions, we find that the two processes occur on the same timescale, thus significantly
prolonging the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional mem-
brane flows, which couple the motions of even themost remote inclusions in the assembly. The same correlations also cause the
diffusion coefficient of the center of mass to decay slowly with time, resulting in weak subdiffusion. We confirm our analytical
results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications
for the stability of nanoscale membrane heterogeneities.
SIGNIFICANCE Membrane heterogeneities on the scale of tens of nanometers play a key role in many cellular functions.
We show that once such a domain starts dispersing into the background lipid membrane, its collective random motion
remains fast compared to the rate of dispersal, making the domain move as a compact object for times orders of magnitude
longer than expected. The collective dynamics is caused by strong, long-ranged velocity correlations mediated by flows in
the host fluid membrane. This fundamental flow-induced effect should be dominant at distances larger than the molecular
scale, thus prolonging the stability and sustaining the collective motion of membrane nanodomains.
INTRODUCTION

Processes occurring on the cell membrane, such as
signaling, adhesion, bridging, and membrane remodeling,
usually involve the recruitment of specialized lipids and
proteins into compact domains nanometers to tens of nano-
meters in size (1). In addition, reports and arguments con-
cerning the presence of so-called lipid rafts of different
compositions have persisted for decades. The exact nature
and stability of such 10-nm-scale dynamic domains have
been the subject of intense research and debate (2,3).

Because of the fluid nature of the lipid membrane, inclu-
sions such as membrane proteins and small domains undergo
randomBrownianmotion. The diffusion coefficient of a single
inclusion has been studied extensively since the pioneering
work of Saffman and Delbr€uck (SD) (4,5). The anomalous
quasi-two-dimensional flows in a pristine membrane make
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the diffusion coefficient depend veryweakly (logarithmically)
on the particle’s size. This holds so long as the particle is small
compared to the so-called SD length, which is proportional to
the ratio between membrane viscosity and the viscosity of the
surrounding fluid. For a pristine membrane embedded in a
fluid with the viscosity of water, the SD length is about half
a micrometer, which is typically much larger than the radius
of the inclusions mentioned above. These predictions have
been confirmed in many experiments and simulations (6–8)
but, at the same time, were found to be sensitive to details
such as protein crowding (9) and the obstructed membrane
structure in the vicinity of the inclusion (8,10).

The SD model has been extended over the years to other
scenarios, including objects whose size is comparable to and
larger than the SD length (11), supported membranes
(12,13), and membranes containing immobile inclusions
(14,15). In the latter two cases, the governing length scale
is no longer the SD length, but a smaller length dictated
by the impurities (the substrate or immobile particles).

In recent years, there has been a growing recognition that
membrane inclusions do not move independently (6,16).
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FIGURE 1 Illustration of the model and its parameters. To see this figure

in color, go online.

Dispersion of membrane domain
The same anomalous flows mentioned above cause the mo-
tions of lipids and proteins to be strongly correlated over
large distances (17). Up to a cutoff distance, determined
by the SD length (or the smaller length in the nonpristine
cases), the correlation decays only logarithmically with dis-
tance (18–20). Even in the presence of impurities, the corre-
lation beyond the cutoff length is not negligible but
continues to decay as the inverse of the distance squared
(15,21). Such long-range correlations were measured in
several synthetic membranes and recently also in mem-
branes of living cells (16).

The dynamics of membranal assemblies is obviously
complex and depends on various interactions and system
parameters. In this work, we isolate and consider a single
effect, namely the collective diffusion of the inclusions
due to the flow-mediated correlations mentioned above.
Unlike the direct interactions among inclusions (e.g.,
screened electrostatic interactions, van der Waals attrac-
tion, specific steric effects, etc.), it is a long-range effect
that should dominate at separations larger than a few nano-
meters. This physical effect should be present in any partic-
ular scenario in which an assembly of inclusions disperses
over the fluid membrane. As a specific example, we
mention the membrane fusion involved in cell infection
by various membrane-enveloped viruses. In some viruses,
this process was found to require a pH-induced, reversible
conformational change of glycoproteins, which causes
them to form a cluster of a few dozens of protein com-
plexes (22). The formation of this contact zone catalyzes
the membrane fusion stage. Once the fusion process has
completed, an opposite pH change can restore the original
glycoproteins’ conformations, thus enabling the dispersal
of the cluster.

When the diffusion of an assembly of mobile inclusions is
concerned, there are several diffusion coefficients to
consider: 1) the self-diffusion coefficient of a single isolated
particle, D0; 2) the self-diffusion coefficient of a single par-
ticle within the assembly, Dself; 3) the diffusion coefficient
of the assembly’s center of mass (CM), DCM; and 4) the co-
efficient characterizing the dispersal of the assembly, i.e.,
the diffusive growth of its radius of gyration, Dg. The coef-
ficients D0 and Dself are measured, for example, using sin-
gle-molecule tracking for an isolated membrane protein
and a protein within an assembly, respectively (6). The co-
efficient D0 can be measured also by fluorescence correla-
tion spectroscopy (23). The coefficient DCM can be
measured by non-single-molecule but super-resolution fluo-
rescence microscopy (24). The coefficient Dg can be
measured by following the expanding radius of a fluorescent
domain. We address all four coefficients below. In partic-
ular, the ratio DCM/Dg serves as a characteristic of the extent
to which the assembly moves collectively before it dis-
perses, i.e., its persistence as a compact object.

The gradient diffusion coefficient, D, which is the one
entering the diffusion equation for the continuous concen-
tration of particles (as measured, for example, by fluores-
cence recovery after photobleaching (23)), should also be
mentioned. This coefficient is not equivalent to Dg because
it is measured in the laboratory reference frame and thus is
affected also by the CM motion.

When the motions of particles are decoupled, Dself ¼
Dg ¼ D ¼ D0 and DCM ¼ D0/N, where N is the number of
particles. Hence, for assemblies containing more than a
dozen particles,DCM is negligible in comparison to the other
coefficients. As a result, the assembly disperses before its
CM had the time to move appreciably. As we shall see
below, the correlations in fluid membranes lead to strikingly
different behavior—DCM is similar or even larger than Dg,
giving the assembly the opportunity to diffuse collectively
before it spreads out. It was recognized before that mem-
brane-embedded extended objects, such as polymer chains,
have a DCM comparable to the diffusion coefficient of their
constituent monomers (13,25–27). In this work, we focus on
the implications of the underlying strong correlations for the
dynamics of a dispersing assembly of inclusions. Unlike
those earlier works, the dispersing assembly is inherently
out of equilibrium, and its statistical distributions are time
dependent.
METHODS

Model

Following the SD model, we treat the membrane as a flat fluid layer of two-

dimensional (2D) viscosity m, in contact on its two sides with two fluids of

three-dimensional (3D) viscosities hin and hout. See Fig. 1. The SD length is

defined as

k�1 ¼ m=ðhin þ houtÞ (1)

The diffusion coefficient of an isolated disk-like inclusion of radius

a � k�1 is given by SD as

D0 ¼ kBT

4pm

�
ln

2

ka
�g

�
; (2)

where kBT is the thermal energy and g x 0.58 is Euler’s constant.
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We consider an assembly of N such inclusions, distributed initially over

an area of typical radius R0 � k�1, as illustrated in Fig. 1. (The particular

distribution and exact definition of R0 will be presented below.) For

simplicity, we assume an isotropic distribution. The positions of the parti-

cles are {ri}, i ¼ 1, ., N. We use Latin indices to represent the particles

and Greek indices to indicate the in-plane coordinates (x, y).

When forces {Fi} are exerted on the particles, their velocities respond

linearly according to

via ¼ Bij
ab

��
rk¼ 1:::N

��
Fj
b; (3)

written in the convention of summation over repeated indices. The many-

particle mobility tensor B, which depends on the particles’ instantaneous

configuration, characterizes the self-response of a particle to the force

acting on it (i ¼ j), as well as its response to the forces acting on the others

(i s j). The latter arises from the flow-induced coupling between the par-

ticles. We use the following tensor:

Bi¼ j
ab ¼ B0dab ¼ 1

4pm

�
ln

2

ka
� g

�
dab;

Bisj
ab ¼ 1

4pm

"�
ln

2

krij
� g� 1

2

�
1� 2a2�

rij
�2��dab

þ
�
1� 2a2�

rij
�2� rijar

ij
b�

rij
�2
#
; (4)

where rij h rj � rj. This tensor, derived in (28), is analogous to the Rotne-

Prager-Yamakawa tensor for 3D suspensions (29,30). Although it contains

the leading two orders in large interparticle separation, it is guaranteed to be

positive-definite for any configuration where all rij > 2a. In addition, the

tensor is valid in the limit rij � k�1. Under these approximations,

the self-components are configuration independent and given simply by

the SD mobility (Eq. 2). The coupling components contain the well-known

leading logarithmic terms (18,19) mentioned in the Introduction, as well as

the next-order (quadratic) correction in small a/rij (28).

When random thermal forces act on the particles, they perform Brownian

motions, which gradually disperse the assembly. These random velocities

are correlated according to Eqs. 3 and 4, leading to configuration-dependent

complex dynamics.
Analytical calculations

The CM position is given by RCM ¼ N�1PN
i¼1r

i. We denote by Di(t) the

displacement of particle i from an initial position ri0 to its position after

time t, ri. The corresponding CM displacement isDCM(t)¼ N�1PN
i¼1D

iðtÞ.
The CM diffusion coefficient is related to its mean-square displacement

(MSD),

4

Z t

0

DCMðsÞdshhDCM , DCMi ¼ N�2
XN
i¼ 1

�
Di , Di

	
þ 2N�2

XN
i¼ 1

XN
j > i

�
Di , Dj

	
(5)

The first term on the right-hand side relates to the self-diffusion of the

individual particles, whereas the second one arises from the coupled diffu-

sion. These displacement correlations are determined by certain diffusion

coefficients, hDi ,Dji ¼ 2
R t
0
ðDij

xx þ Dij
yyÞdt. In fact, this diffusion tensor
2032 Biophysical Journal 120, 2030–2039, May 18, 2021
is directly related to the mobility tensor of Eq. 4 through the Einstein-Smo-

luchowski relation, Dij
ab ¼ kBTB

ij
ab. Using the tensor components of Eq. 4,

we identify the CM diffusion coefficient. Without correlations, it is given by

a constant

Dnc
CM ¼ N�1D0 ¼ N�1 kBT

4pm

�
ln

2

ka
�g

�
; (6)

and with the flow-mediated couplings, by

DCMðtÞ ¼ kBT

4pm

 
1

N
ln

2

ka
�gþ 2

N2

XN
i¼ 1

XN
j > i

ln
2

krijðtÞ

!
(7)

Note that the correction terms �a2/(rij)2 appearing in Eq. 4 cancel out in

DCM. It is important to note also that the time dependence of DCM(t)

does not arise from memory, as Eq. 4 describes a strictly instantaneous

response. The coefficient depends on the instantaneous configuration,

which changes with time.

The squared radius of gyration is defined as R2
g ¼ N�1

PN
i¼1(r

i � RCM)
2.

Thus,D
R2
g

E
h

1

N

*XN
i¼ 1

�
ri � RCM

�2+ ¼ R2
0 þ

1

N

XN
i¼ 1

�
Di , Di

	
� 2

*
1

N

XN
i¼ 1

Di ,
1

N

XN
j¼ 1

Dj

+
þhDCM , DCMi

¼ R2
0 þ 4D0t� 2hDCM , DCMiþ 4

Z t

0

DCMðsÞds

¼ R2
0 þ 4D0t� 4

Z t

0

DCMðsÞds;
(8)

where R0 h Rg(t ¼ 0). From this equation, we identify the variance of the

gyration radius, hR2
gi� R2

0h4
R t
0
DgðsÞds, and the diffusion coefficient of

the radius of gyration,

Dg ¼ D0 � DCM (9)

Usually, Dg x D0 [ DCM. This is not the case in our work, in

which DCM is comparable to D0 and therefore also to Dg. Furthermore, if

DCM > D0/2, the cluster disperses more slowly than it moves collectively,

DCM > Dg. Like DCM, Dg is also configuration dependent (through DCM).

SubstitutingRCM¼ N�1PN
i¼1r

i in Eq. 8, we similarly obtain the variance

of the interparticle separation rij in terms of hR2
gi, which is�

rij , rij
	 ¼ 2R2

0 þ 8D0t � 8

Z t

0

DCMðsÞds

¼ 2R2
0 þ 8

Z t

0

DgðsÞds (10)

The other diffusion coefficients mentioned in the Introduction are less

relevant to our main effect, as they are all comparable to D0. Under the

assumption of the pairwise-additive hydrodynamic interactions (see Eq.

4) and the lack of direct interaction, the self-diffusion coefficient Dself is

equal to D0. The two might differ because of direct and many-body interac-

tions, as captured, for example, by changes in the effective viscosity of the

heterogeneous fluid (31). In fact, the more general and accurate version of

Eq. 9 is Dg ¼ Dself � DCM. In addition, as will be shown below, the entire
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contribution of the self-terms to DCM is negligible during the relevant stage

of dispersal (see Eq. 12). The gradient diffusion coefficient D, as well, will
generally deviate from D0 and Dself because of correlations that go beyond

our model (for more details, see, for example, (32)).
Simulation method

We use the technique of Brownian dynamics with hydrodynamic interac-

tions (33,34). The simulation takes place in a square box of side L h 1,

with periodic boundary conditions. Initially, a set of N disks of radius

a ¼ 0.005 are placed randomly, but without overlap, within a circular

area of radius R0 ¼ 0.1; see Fig. 3 A and C for examples of initial config-

urations. At each step, a set of N stochastic but correlated forces (see below)

are applied to the particles. The particles’ velocities are then calculated us-

ing the many-particle mobility tensor of Eq. 4, with k�1 ¼ 5 and m h 1.

The particles’ displacements to the next configuration are then calculated

using the simplest Ito convention. A displacement that makes a disk overlap

another is rejected, and that particle is not moved. The positive-definite

tensor (Eq. 4) guarantees dynamic stability (28).

Each run consists of 1000 steps, and the results are averaged over 100

runs (with different initial configurations). These results include the MSD

of individual particles, the MSD of the center of mass, and the difference

in the squared radius of gyration from its initial value. The corresponding

diffusion coefficients, Dself, DCM, and Dg, are obtained from the slopes of

these mean-square displacements as functions of t. Errors are estimated

by comparing the linear fit using the first 500 steps and all 1000 steps.

We simulated different numbers N while keeping R0 fixed, thus sampling

different initial densities.

The main difficulty lies in producing the correlated random forces fi,

i ¼ 1, ., N, such that the fluctuation-dissipation theorem is obeyed,

hf iaðtÞf jbðt0Þi ¼ 2kBTðB�1Þijabdðt�t0Þ (33,34). Although the procedure is

known, we repeat it here to help future implementations. At each step,

we perform the following actions: 1) calculating the 2N � 2N

mobility matrix B using Eq. 4; 2) diagonalizing B into bBpq ¼ bpdpq, p,

q ¼ 1, ., 2N; 3) constructing the diagonal matrix Âpq ¼ apdpq, where

ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=ðbpdtÞ

p
and dt is the time interval associated with a simula-

tion step; 4) transforming Â to the basis of the original B, obtaining the

nondiagonal matrix A; 5) producing a set of 2N independent standard

Gaussian random variables, f0,p, such that hf0;pi ¼ 0 and hf0;pf0;qi ¼ dpq;

and 6) obtaining the correlated forces by applying A to the uncorrelated

forces, fp ¼ Apqf0,q.

The results are translated into physical units using m ¼ 10�6 poise , cm

(7), T ¼ 300 K, and k�1 ¼ 500 nm. The latter implies that the simulation

box side is equivalent to 100 nm, the initial domain radius to 10 nm, and

the disk diameter to 1 nm.

Videos of typical simulations without and with flow-mediated interac-

tions are found in the Supporting material (Videos S1 and S2).
RESULTS

Analytical results

Our main focus is the CM diffusion coefficient, DCM. The
expression for that diffusion coefficient given a certain
DCMðtÞ ¼ kBT

8pm

�
� ln

�
k2

2

�
R2
0 þ 4
configuration is found in Eq. 7. We look for the ensemble
average over all configurations, hDCMi. (For brevity, we
will continue to use the symbol DCM, omitting the angular
brackets.) In Eq. 7, we identify ln(krij) as the only term that
should be averaged. To perform the averaging, we are
required to find the statistical distribution of interparticle sep-
arations, rij. Unlike earlier works on membrane-embedded
polymers, this statistical distribution changes over time as
the assembly progressively disperses. As a result, hlnðkrijÞi
itself depends on DCM (see Eq. 10). This will lead to a self-
consistent equation for DCM(t).

The interparticle separation distribution, G(rij, t), is to a
good approximation a Gaussian with a variance given by
Eq. 10. Applying this distribution to the required average,
we obtain from Eq. 7

DCMðtÞ ¼ kBT

4pm

�
1

N
ln

2

ka
þ N � 1

N

�
ln

2

kRðtÞ � b

�
� g

�
;

bh

Z
d2rGðrÞln r ¼ 1

2
ðln2� gÞx0:058;

(11)

where R(t)h
ffiffiffiffiffiffiffiffiffi
hR2

gi
q

, such that R(t¼ 0) ¼ R0 and rh rij/R.
Using a different (non-Gaussian) distribution or different
domain shape will change the geometric factor b into a
time-dependent function b(t) (see Supporting materials
and methods). The time dependence is weak because the
distribution tends to a Gaussian eventually. Because N [
1, we can rearrange Eq. 11 into

DCMðtÞ ¼ kBT

4pm

�
ln

2

kRðtÞ�g

�
; (12)

where R ¼ ebRx 1.06R. Comparing Eq. 12 with D0 of Eq.
2, we see that the assembly’s CM diffuses effectively like a
rigid disk with effective radius R. This result is similar to the
diffusion coefficient of a circular liquid domain found in
(13) (see also Supporting materials and methods). The
main difference is that our effective size changes over
time. The diffusion coefficient of gyration could be written
in terms of R(t),

DgðtÞ ¼ kBT

4pm
ln
RðtÞ
a

; (13)

which, surprisingly, is independent of the SD length.
Substituting Eq. 8 in R ¼ eb

ffiffiffiffiffiffiffiffiffi
hR2

gi
q

gives the self-consis-
tent equation for D (t),
CM
D0t� 4

Z t

0

DCMðsÞds
��

�g

�
(14)
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Due to the model’s assumptions, this equation is only
valid when the interparticle distances are smaller than the

SD length, R � k�1. Because R2 ¼ R2
0 þ 4D0t�

4
R t
0
DCM(s)ds > 4Dg(0)t, the time during which the model

is valid is t � k�2

Dgð0Þ. Equation 14 has the exact solution,

DCMðtÞ ¼ D0 � kBT

8pm
Ei�1

 
R2
eff þ 4Dexpt

a2

!
;

R2
effha2Ei

�
ln
2R2

0

a2
� g

�
; Dexph

kBTe
�g

4pm
;

(15)

where Ei(x) ¼ R x�N
ez

z
dz is the exponential integral function

and Ei�1(x) is its inverse. Notice that DCM’s time depen-
dence is not a function of R2

0 þ 4D0t as might have been ex-
pected, but rather has another initial effective square radius
R2
eff <R2

0 and an effective expansion diffusion coefficient
Dexp < D0 (the inequalities arise from the assumption that
k�1 [ R0 [ a. Curiously, Dexp depends only on T and
m and is independent of any length scale (k, a, or R0).

This solution is presented in Fig. 2 (solid line). The
decrease of DCM with time implies that the CM performs
subdiffusion. This could be verified directly in Eq. 15, as
Ei�1(x) is a monotonically increasing function. The physical
origin of the subdiffusion lies in the weakening of correla-
tions as the assembly disperses. The time dependence is
only logarithmic (see Eq. 17 below), and its experimental
(and numerical) relevance is therefore limited.

To clarifyEq. 15 further,wepresent twoasymptotic limits of
the exact solution. In the short-time regime, we assume a per-
turbed initial CM diffusion coefficient, DCM(t) ¼ DCM(0) þ
εCM(t). To leading order in small εCM(t)/Dg(0), we get
FIGURE 2 Center-of-mass diffusion coefficient versus time, as obtained

analytically for a Gaussian-distributed assembly of particles. The solid line

shows the exact solution (Eq. 15), the dashed line is the short-time asymp-

tote (Eq. 16), and the dotted line is the long-time approximation (Eq. 17).

The inset focuses on the experimentally relevant short-time region. Param-

eter values: a ¼ 0.5 nm, R0 ¼ 10 nm, k�1 ¼ 500 nm, m ¼ 10�6 poise , cm,

T ¼ 300 K. To see this figure in color, go online.
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DCMðtÞxDCMð0Þ � kBT

4pmR2
0

Dgð0Þt (16)

This linear expression is valid for t � 4pmR2
0/kBT.

Because this value is only one order of magnitude bigger
than R2

0/D0, at longer times the assembly has already
dispersed significantly. Thus, DCM(0) and its leading correc-
tion given by Eq. 16 provide a good approximation over the
relevant timescales. This will also be demonstrated in the
Simulation results section. It is noteworthy that the exact
DCM is always larger than the short-time approximation
(see Fig. 2, dashed line).

The second, ‘‘long-time’’ asymptote uses the expansion
Ei�1(x) x ln(xlnx) for large x. We put the term ‘‘long-
time’’ in quotation marks because on the one hand, the cor-
rections to the expansion at any order are never small
because of their logarithmic nature (35). On the other
hand, because we always have Reff [ a, the argument in
the expansion, indeed, is always large. Hence, the
approximation

DCMðtÞxkBT

4pm

0B@ln

0B@ 2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
eff þ 4Dexpt

q
1CA�g

� 1

2
ln

 
ln

 
R2
eff þ 4Dexpt

a2

!!1CA
(17)

has a wide range of validity but at the same time is never
very accurate. Fig. 2 demonstrates this unusual situation.
Substituting Eqs. 15, 16, and 17 in Eq. 9, we readily get
the corresponding expressions for the gyration diffusion
coefficient:

DgðtÞ ¼ kBT

8pm
Ei�1

 
R2
eff þ 4Dexpt

a2

!
; (18)

kBT

DgðtÞxDgð0Þ þ

4pmR2
0

Dgð0Þt; short-time approximation

(19)

and

DgðtÞxkBT

4pm

0@ln

0@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
eff þ 4Dexpt

q
a

1A
þ 1

2
ln

 
ln

 
R2
eff þ 4Dexpt

a2

!!1A;

long-time approximation

(20)

Note again that Dg is independent of k.
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Equations 15, 16, and 17 are our central results.
Comparing to Eq. 6 we can appreciate the remarkable differ-
ence that arises from flow-induced correlations. The strong
N�1 suppression of DCM is replaced by a much weaker log-
arithmic dependence on the cluster’s radius. When the
particles become indefinitely far apart, Eq. 6 will even-
tually apply. This will occur when the interparticle
distance becomes comparable to k�1 (after time of order
k�2/(Dg(0))). This limit lies beyond the assumptions of the
model and is not captured by Eq. 15. It is not of much inter-
est, though, as it implies that the cluster has already
disintegrated.

The self-consistent calculation presented above can be
repeated for an assembly of spherical particles in 3D. The
effect is much weaker. Because the hydrodynamic interac-
tions in this case make DCM inversely proportional to R
(as in the Zimm dynamics of polymers (36)), it becomes
comparable to Dg only for significantly smaller cluster radii
(i.e., denser clusters).
Simulation results

Fig. 3 demonstrates the main effect that wewish to highlight.
Fig. 3, A and C show snapshots from simulations of two
50-particle assemblies, without and with the flow-induced
correlations (see also Videos S1 and S2). The uncorrelated
assembly disperses before it has the time to move much as
a whole (Fig. 3 A), whereas the correlated one shows a vivid
displacement of its center of mass (Fig. 3 C). These panels
A C

B D
also present the particles’ displacement vectors from the
initial positions to the positions after 10 time steps,
demonstrating the directionality induced by the correlations.
Fig. 3, B and D show the CM MSD and the difference in the
mean-square radius of gyration from its initial value, as a
function of time, averaged over 100 runs. In the case of
the correlated assembly, the CM MSD is much larger and
becomes comparable to the mean-square radius of gyration.
No consistent change of slope could be discerned in the CM
MSD curves. Thus, the time-dependent logarithmic correc-
tion to the initial CM diffusion coefficient, obtained analyt-
ically above, is too small to be resolved in these simulations.
In the following analysis, therefore, we will consider the CM
diffusion coefficient as being constant.

We now proceed to a more detailed analysis of the dy-
namics. All comparisons to theoretical predictions are
without any fitting parameters.

Fig. 4 shows the simulation results for the self-diffusion
coefficient of individual particles within the assemblies.
The Dself values are scattered within a 10% difference
around the theoretical value of D0 (solid line), without a
consistent dependence on assembly size or flow-mediated
correlations. This is in line with the prediction of Dself ¼
D0 for our model (Eq. 4). The prediction relates to the
short-time self-diffusion coefficient in the absence of inter-
actions (32), whereas the simulated particles have excluded-
volume interactions, and their MSDs are measured over the
entire simulation time. The deviations found in Fig. 4, there-
fore, are to be expected, and the overall trend of slightly
FIGURE 3 Simulated time evolution of assem-

blies made of 50 particles, without (A and B) and

with (C and D) flow-mediated correlations. (A) and

(C) show snapshots of the initial configuration

(black) and the configurations after 500 (gray) and

1000 (light gray) time steps. Arrows at the corners

show particle displacements from the initial config-

uration to the one after 10 time steps (the scale is

larger; the patch of arrows is the same size as the

black patch of particles). (B) and (D) show on a

log-log scale the corresponding mean-square

displacement of the center of mass (lower, blue)

and change in mean-square radius of gyration (up-

per, red), averaged over 100 runs. The unit of length

is the simulation box size. The dashed line has a

slope of 1 for comparison. To see this figure in color,

go online.

Biophysical Journal 120, 2030–2039, May 18, 2021 2035



FIGURE 4 Self-diffusion coefficient as a function of particle number, ob-

tained from simulations of uncorrelated (red circles) and correlated (blue

squares) assemblies. Parameter values are as in Fig. 2. The horizontal

line shows the value of the theoretical SD diffusion coefficient of an isolated

particle (Eq. 2) for these parameters, D0 ¼ 2.31 mm2/s. To see this figure in

color, go online.

FIGURE 6 Gyration diffusion coefficient as a function of particle num-

ber, obtained from simulations without (red circles) and with (blue squares)

flow-induced correlations. This coefficient characterizes the diffusive

dispersal of the assembly. The solid lines correspond to the analytical pre-

dictions (Eqs. 6 and 9 for the upper curve; Eqs. 9 and 12 for the lower line).

Parameter values are as in Fig. 2. To see this figure in color, go online.
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smaller coefficients in the simulations probably arises from
the exclusion (crowding) effect.

Fig. 5 A shows the results for the CM diffusion coefficient
without correlations. The numerical results follow Eq. 6
(solid line) nicely, demonstrating the expected decrease of
DCM with number of particles in the assembly. Fig. 5 B
shows the results in the presence of flow-mediated correla-
tions. The CM diffusion coefficient is an order of magnitude
larger than in Fig. 5 A and remains roughly unchanged
(�10% variation) with increasing particle number. The
numerical values are in quantitative agreement with
DCM(t ¼ 0) as obtained from Eq. 12 (solid line). The inset
in Fig. 5 B shows the ratio between the CM diffusion coef-
ficients with and without the correlations, highlighting the
strong effect of correlations and its agreement with the
analytical theory.

Fig. 6 presents the results for the gyration diffusion coef-
ficient without and with correlations. The uncorrelated as-
sembly is found to disperse twice as fast as the correlated
one. The results are in quantitative agreement with the
analytical predictions (Eq. 9). Comparing Figs. 5 B and 6,
we see that for the selected (realistic) parameter values,
A B
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the correlations make the gyration diffusion coefficient
smaller than the CM one.

Finally, in Fig. 7 we reuse the data of Figs. 5 and 6 to
show the ratio between the CM diffusion coefficient and
the gyration diffusion coefficient without and with flow-
induced correlations. The larger DCM (Fig. 5), together
with the smaller Dg (Fig. 6), lead in the presence of correla-
tions to a ratio that is larger by a factor of 10–50 than its
values without correlations. For larger particle assemblies,
the ratio will increase even further.
DISCUSSION

The results that are most relevant to experiments are given in
Eqs. 12 and 13 for the CM and gyration diffusion coeffi-
cients; they demonstrate how the two coefficients are com-
parable. This central result is a distinctive property of
inclusions in fluid membranes and differs qualitatively
from the behaviors in other particle-laden fluids. As we
have mentioned above, because of the weak logarithmic
dependence on size, the time-dependent radius R(t) can be
replaced without significant error by the initial domain
FIGURE 5 Center-of-mass diffusion coefficient

as a function of particle number, obtained from sim-

ulations without (A) and with (B) flow-mediated cor-

relations. The solid curve in (A) shows the

theoretical prediction in the absence of correlations,

Dun
CM ¼ D0/N (Eq. 6). The solid line in (B) shows the

theoretical prediction in the presence of correlations,

with DCM equivalent to that of a rigid disk of radius

R0 (Eq. 12 for t ¼ 0). The inset shows the ratio be-

tween the coefficients with and without correlations.

Parameter values are as in Fig. 2. To see this figure in

color, go online.
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FIGURE 7 Ratio of CM diffusion coefficient and

gyration diffusion coefficient as a function of parti-

cle number, obtained from simulations without (A)

and with (B) flow-induced correlations. The data

are the same as in Figs. 5 and 6. The solid lines

correspond to the analytical predictions. Parameter

values are as in Fig. 2. To see this figure in color,

go online.
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radius R0. This has been also demonstrated in our simula-
tions. These two diffusion coefficients could be measured,
for example, by fluorescence microscopy.

On a more theoretical level, we obtained the exact solu-
tion for the time-dependent CM and gyration diffusion coef-
ficients, along with their short-time and long-time
asymptotes, for a Gaussian distribution of particles. See
Eqs. 15, 16, and 17 and Eqs. 18, 19, and 20, respectively.
The time dependence of the diffusion coefficients leads to
a weak subdiffusion of the CM (MSD growing in time as
tln(t�1)). This is an unusual example of scaled Brownian
motion in a thermalized environment (37). A few additional
theoretical findings are worth mentioning: 1) the correction
to the correlation tensor (Eq. 4) due to the particles’ finite
size does not contribute to the diffusion coefficients. This
implies that our fluid membrane is ultimately equivalent
theoretically to a 2D fluid, which induces purely logarithmic
correlations up to some system-dependent cutoff; 2) the
diffusion coefficient explicitly characterizing the expansion
of the domain, Dexp, is found to be independent of any
length scale in the system (see Eq. 15); and 3) the gyration
diffusion coefficient was found to be independent of the SD
length.

Our main analytical predictions have been confirmed by
the simulations without any fitting parameters. At the
same time, the simulations showed that the theoretical sub-
tleties just described would be hard to resolve experimen-
tally. At the long times required to observe them, the
assembly has already completely dispersed. For the same
reason, DCM is relevant mostly in the short-time limit,
when the assembly is still small, requiring super-resolution
microscopy. Numerically, observing the subtle subdiffusion
would require more extensive simulations than those pre-
sented here.

The most significant simplification in our theory is the
absence of any direct interactions among the inclusions, as
our purpose has been to isolate the essential effect of
flow-mediated correlations. For example, short-range inter-
actions at the perimeter of the domain would lead to effec-
tive line tension, which has not been considered here.
Neglecting direct interactions also leads to a gradient diffu-
sion coefficient that is unaffected by the correlations,
D ¼ D0. In a more accurate account, it should depend on
positional correlations, i.e., the structure factor (32). Future
studies should address the interplay between the flow-
mediated correlations and molecular interactions. We note
that at distances larger than a few nanometers (i.e., for suf-
ficiently spread-out clusters), we expect the long-ranged
flow-mediated effect to be dominant. Another strong
assumption has been the consideration of a pristine mem-
brane with unobstructed flows. In a real membrane, our re-
sults should still be valid over distances shorter than a
certain cutoff length, replacing the SD length (15,16,21).
Molecules that locally modify the membrane’s fluidity
(38,39), such as cholesterol, should also influence the
dispersal of domains.

There are several additional noteworthy approximations
that may be relaxed in future studies. 1) We have assumed
that the inclusions are much smaller than the interparticle
distances within the assembly. The interaction tensor that
we have used (Eq. 4) contains the leading correction to
this limit, which turns out to have no effect on the CM
and gyration diffusion coefficients. Much denser assemblies
in which particles reach close proximity would require
higher-order terms. 2) The assembly’s evolving shape and
motion were assumed to be isotropic, resulting in scalar
diffusion coefficients. Asymmetric shapes would entail
more complicated (tensorial) response, which might lead
to interesting shape instabilities. 3) We have not included
memory (viscoelastic) effects (40,41); our anomalous diffu-
sion (subdiffusion) arises from an instantaneous response to
evolving configurations. Finally, 4) assuming a flat mem-
brane, we have neglected membrane curvature and fluctua-
tions. The effect of these factors on in-plane diffusion is
subtle (42,43), and their implications for domain dispersal
require a comprehensive separate study.
CONCLUSION

The numerical and analytical results as presented in Fig. 7
quantify our central observation—flow-induced correla-
tions between membrane inclusions prolong the lifetime
of membrane-embedded assemblies to a remarkable extent.
This general observation may have profound implications
for the stability of actual nanodomains and rafts in biolog-
ical membranes. On top of the usually studied stages of
Biophysical Journal 120, 2030–2039, May 18, 2021 2037
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molecular recruitment into a functional membrane domain,
we wish to highlight the ensuing stage of the domain’s
dispersal. Thus, the results obtained here may play a signif-
icant role in more detailed modeling of various processes
such as endo- and exocytosis, viral infection, and signaling.
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