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We examine the response of a quasi-two-dimensional colloidal suspension to a localized circular driving
induced by optical tweezers. This approach allows us to resolve over 3 orders of magnitude in the Péclet
number (Pe) and provide a direct observation of a sharp spatial crossover from far- to near-thermal-
equilibrium regions of the suspension. In particular, particles migrate from high to low Pe regions and form
strongly inhomogeneous steady-state density profiles with an emerging length scale that does not depend
on the particle density and is set by Pe ≈ 1. We show that the phenomenological two phase fluid constitutive
model is in line with our results.
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Complex fluids comprise a family of fluids which
include elements of intermediate size; elements which
are larger compared to the molecules forming the embed-
ding liquid and smaller compared to a typical macroscopic
length scale. Among many (e.g., solutions of long polymer
chains), suspensions of hard spheres, which we address
here, are probably the simplest example.
Over the years extensive efforts have been invested in

exploring the flow behavior of hard sphere suspensions at
conditions that are far-from-thermal equilibrium (i.e., non-
Brownian suspension) [1,2] both experimentally and by
modeling. Strong driving significantly modifies the micro-
structure of the immersed particles [3–5]. The coupling
between microstructure and hydrodynamic interactions
between particles [3,6], and the frictional contact between
the particles [7,8], result in a rich phenomenology which is
dramatically different from that of Newtonian fluids. This
includes a strong rate dependence of viscosity and the
emergence of normal stresses [2,9]. The latter, in particular,
does not have any equivalence in classical fluids and gives
rise to large scale motion (migration) of particles relative to
the embedding liquid [1,2,10–13]. Resulting large scale
variations in the particle density, in turn, affect the overall
flow of the composite fluid.
In contrast to the far-from-thermal-equilibrium limit,

where the Brownian motion of the particles has negligible
contribution, migration at the near-equilibrium regime
requires understanding of the interplay between particle
flow and their thermal fluctuations. Although the former
has been extensively explored in experiments, the study of
the latter largely relies on numerical simulations. Here we
provide measurements of particle migration at both high
and low strain rate regimes and directly resolve the spatial
crossover between the two. We characterize this crossover

across a wide range of driving rates and particle densities,
and show that a previously suggested phenomenological
two phase fluid constitutive model [14] is in line with our
observations.
To this end, we adopt a bottom-up approach. We probe

the response of a colloidal suspension to local driving on a
single particle level [15–22]. This is in contrast to tradi-
tional methods such as rheology, that focus on the flow
behavior caused by imposing bulk forces on macroscopic
samples [2].
Our experimental system is schematically presented in

Fig. 1(a). We let two types of spherical colloidal particles
sediment and form a quasi-two-dimensional (2D) layer in a
range of area fractions 0.1 < ϕ0 < 0.4. For the majority
phase, bath particles, we use 3-trimethoxysilyl propyl
methacrylate (TPM) [23] with a radius of a ¼
1.35� 0.05 μm [24]. A Melamine-formaldehyde (MF)
particle (a ¼ 1� 0.03 μm, Sigma-Aldrich) is trapped
above the glass plate and prescribed a circular trajectory
by using optical tweezers. Linear driving frequencies are
varied within a range of 0.1 < f < 10 Hz. Any inertia
effects, including centrifugal forces, are negligible due to
the low Reynolds numbers Re < 10−6 conditions. Self-
diffusion of the sedimented bath particles near the bottom
solid plane [25,26] is measured to be D ≈ 0.05 μm2= sec.
An inverted microscope (Olympus IX71) with a 60 ×

objective (Olympus, oil immersion, NA ¼ 1.42) is used to
image the particles and focus the trapping laser beam
(λ ¼ 1083 nm). A circular motion of the trapped particle is
prescribed by deflecting the laser beam with a piezo tip-tilt
platform (Physik Instrumente (PI) GmbH & Co. KG)
[18,27]. Particles are dispersed in an organic solvent
mixture of 40=60 (by volume) Tetralin and Decalin, and
commercial dispersant OLOA 1200 (∼1% by weight).
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The index of refraction, n, of the solvent, nearly matches
the index of refraction of the TPM particles [Fig. 1(b),
inset]. Since optical trapping depends on the refractive
index mismatch between particle and medium, we can
manipulate the MF (n ≈ 1.68) particles while barely affect-
ing the TPM particles (n ≈ 1.5) with the laser light. The
positions of the TPM particles can be located and tracked
[28] by processing the images [Fig. 1(b)] as a result of a
small remaining mismatch in n. Further details appear in
the Supplemental Material [29].
A typical example of a steady-state response of the

suspension to a local rotational driving is presented in
Fig. 1. Figure 1(b) demonstrates particle trajectories over a
fraction of the experiment duration (see also the movie in
[29]). The prescribed circular trajectory of the driven
particle induces an average rotational flow profile of the

bath particles with velocity amplitudes that span 3 orders of
magnitude within our field of view [Fig. 1(c)]. Figure 1(d)
shows the resulting highly nonuniform spatial profile of the
particle density (presented in terms of an area fraction ϕ)
that is formed by migration of particles from high to low
flow rate regions. This rearrangement of the particles, in the
absence of an external potential, is a first confirmation of
the strong out-of-equilibrium conditions. Nevertheless, it is
evident that the formed depletion region is localized to the
vicinity of the driving and the suspension recovers equi-
librium conditions at r ≫ R. The measured ϕðrÞ profile,
therefore, provides a direct observation of the spatial
crossover between the out-of-equilibrium and the unaf-
fected equilibrium regions. In what follows we characterize
particle flow, particle migration, and the crossover to
equilibrium, and compare our measurements with a two-
phase constitutive model for colloidal suspensions.
We start by quantifying and modeling the induced

rotational flow of the particles. Figure 2(a) demonstrates
that the averaged azimuthal particle velocity profiles VθðrÞ
are roughly independent of ϕ0. Similarly, measurements of
the particle-particle hydrodynamic interactions [Fig. 2(b)]
and short time self-diffusion [26] show only slight depend-
ence on ϕ0 for ϕ0 < 0.4 [29]. We neglect, therefore,
interactions between the bath particles and model the flow
field through hydrodynamic pair interactions between the
driven and bath particles that appear in an incompressible
viscous liquid at vanishing Reynolds number. The form of
the hydrodynamic interactions depends on the spatial
confinement of the fluid [32]. Here, we consider particle
motion at height h above a solid plane. The velocity of
particle 2, as a result of a motion of particle 1, is given by
v2i ¼ B̃12

ij ðr⃗12;h; a1Þv1j , where B̃12
ij is proportional to the

mobility tensor ([29] and [33]). The eigenvalues of B̃12
ij ,

within the leading order in h=r, are B̃12
k ∼ 1=r3 and

B̃12⊥ ∼ 1=r5, where k and ⊥ symbols denote parallel and
perpendicular directions relative to r⃗12, respectively. Once a
circular path of particle 1 is prescribed, the trajectory of
particle 2 is readily integrated. Such periodic driving results
in a “sawtooth” motion [Fig. 2(b)] and is consistent with
our measured trajectories [Fig. 1(b)]. We obtain an ana-
lytical expression for the average particle rotational veloc-
ity [29] which decays as Vθ ∼ 1=r4.
These predictions for Vθ and B̃12

k describe our measure-
ments asymptotically (r ≫ R), as shown by the dashed
black lines in Figs. 2(a) and 2(b), respectively. A solution
for B̃12

ij for all orders in h=r [34], and the corresponding
integration of Vθ [29], provide an excellent description of
our measurements at all distances with no adjustable
parameters [solid black lines in Figs. 2(a) and 2(b)]. We
conclude therefore that the average particle flow can be
well approximated by the hydrodynamic pair interactions
near a solid plane.
The balance between the shear rate _γ and the Brownian

relaxation time a2=D is characterized by the Péclet number

FIG. 1. Steady-state flow and density profiles of a locally
driven colloidal suspension. (a) A 2D layer of TPM particles is
formed by sedimentation in a sealed cell with thickness w
≈170 μm. A MF particle is trapped at h ≈ 2 μm above the
coverslip by a focused IR laser beam and prescribed a circular
trajectory with a radius R ¼ 3.35 μm (green line). (b) Index of
refraction of the solvent and the bath particles (TPM) were
chosen to match closely (inset) so that interactions between the
laser and TPM particles are negligible. Once the image contrast is
enhanced, particle trajectories can be tracked. Five selected
trajectories of the bath particles over a period of 20 s are
superimposed. (c) Particle velocity field V reveals azimuthal
flow spanning 3 orders of magnitude within the field of view.
Note the logarithmic color axis. (d) Measured local area fraction
ϕðx; yÞ show a highly nonhomogeneous steady-state profile
formed by particles migrating from high to low strain rate
regions. Here ϕðx; yÞ ¼ nðx; yÞ · πa2, where nðx; yÞ is the local
number density. (b)–(d) The prescribed driving frequency and
equilibrium area fraction are f ¼ 10 Hz and ϕ0 ¼ 0.3, respec-
tively. Spatial profiles of V and ϕ where obtained by temporal
averaging of the measurements over a period of ∼40 min and
further smoothed spatially over 0.5 × 0.5 μm2 regions. The
trapped particle is excluded in the V and ϕ color plots.
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Pe ¼ j_γja2=D. Measured VθðrÞ profiles together with
_γθr ¼ r∂rðVθ=rÞ, the only nonvanishing component of
the strain-rate tensor in case of a 2D rotational flow
[35], reveal therefore that PeðrÞ ∼ 1=r5. An important
characteristic of our setup is the ability to spatially resolve
a wide range of Pe [0.1 < PeðrÞ < 100] and access the near
and far-from-equilibrium regimes in a single experiment.
In Fig. 3 we address the evolved microstructure of our

colloidal suspension at both high and low Pe regions by
characterizing the 2D pair correlation function gðx1; x2Þ. In
order to account for the spatial variations in Pe we calculate
gðx1; x2Þ only with respect to the particles that are included
in a narrow ring at a distance of interest r from the center of
the rotational flow [see Fig. 3(a) for details]. Here x1 and x2
denote the spatial coordinates in the parallel θ̂ and
perpendicular r̂ directions with respect to the flow. The
rotational symmetry and the steady-state conditions of the
flow allow us to average gðx1; x2Þ over both the particles
within the ring and time. The gðx1; x2Þ maps obtained far
and near the driving, corresponding to low and high Pe
regions, are presented in Figs. 3(b) and 3(c), respectively.
At low Pe regions, where particle diffusion dominates

particle advection, gðx1; x2Þ show an isotropic form
[Fig. 3(b)] that indicates an equal probability of finding
a particle at any direction with respect to any other particle.
At higher Pe values, however, this symmetry is highly
distorted [Fig. 3(c)] [4,5,37,38]. This broken symmetry of
gðx1; x2Þ reflects the direction of shear—the probability of
observing two particles in close vicinity is significantly
increased in the second and fourth quadrants (compression)

and depleted in the tension quadrants. The modified
microstructure (local rearrangement) of the immersed
particles is a clear signature of nonequlibrium dynamics
and a key ingredient in the emergence of nonlinear stresses
[3]. These stresses, in turn, drive the observed spatial
variations in ϕðrÞ on larger length scales [Fig. 1(d)].
We now characterize the steady state spatial ϕðrÞ profiles

and the crossover to equilibrium. Figure 4(a), left, presents
the measured ϕðrÞ profiles for a wide range of driving rates.
Evidently, increasing driving rates amplify particle migra-
tion, which in turn results in stronger gradients in ϕðrÞ and
wider particle depletion regions. All profiles of ϕðrÞ
collapse to a single functional form [Fig. 4(a), right] when
r is rescaled by the distance where shear and Brownian
motions are comparable rðPe ¼ 1Þ ∼ ðv1Þ1=5. This emerg-
ing length scale that characterizes the spatial crossover
from far- to near-equilibrium conditions of the suspension
is a direct result of the interplay between the flow and
thermal fluctuations and is not present in traditional large
scale rheometry experiments of non-Brownian suspen-
sions, where particle migration is only limited by the
system size [13]. In Fig. 4(b) we further compare a series
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FIG. 2. Induced particle flow by a local rotational driving.
(a) Average azimuthal particle velocity Vθ at two driving
frequencies. Solid lines at the top-left corner denote the velocity
and size of the driven particle. [(b), illustration] Green and blue
are the driven and bath particles, respectively. Separation vector is
denoted by r⃗12. The trajectory of the bath particles (purple) is
calculated by integrating the flow field resulting from the
prescribed circular motion of the driven particle. Compare
the sawtooth trajectories with the measurements presented in
Fig. 1(b). [(b), main figure] Averaged ratio of v1k and v2k, parallel
velocity components with respect to r⃗12, provides a measure of
the parallel eigenvalue of the mobility tensor B̃12

ij ðr⃗12Þ (see main
text and [29] for details). Both f ¼ 1 and f ¼ 10 Hz datasets are
included. (a),(b) Colors denote experiments with different equi-
librium area fractions ϕ0. The asymptotic solution (jr⃗12j ≫ h and
r ≫ h) [33] and corrected result [34] are denoted by dashed and
solid lines, respectively.
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FIG. 3. Pair correlation function near- and far-from-thermal
equilibrium. (a) For any snapshot in time, as radial gradients in
PeðrÞ are present, gðx1; x2Þ is calculated for particles in a narrow
ring (0.1 μm thick) at distance r from the center (orange
particles). Statistics are enhanced by averaging over time and
the particles within the ring by using a polar coordinate system
ðr̂; θ̂Þ. Here x1 and x2 denote local spatial coordinates in the
directions of θ̂ and r̂, respectively. Measured gðx1; x2Þ far from
(b) and near (c) the driving region demonstrate the symmetry
breaking at far-from equilibrium conditions. ϕ0 ¼ 0.3,
f ¼ 10 Hz, corresponding to the experiment presented in Fig. 1.
(d) At equilibrium (no driving), osmotic pressure (blue dots) is
inferred from measurements of g (see main text and [29]). The
uncertainty is roughly represented by the size of the symbols.
Theoretical predictions for 2D layer of hard spheres [36] is
denoted by the black solid line (see main text for more details).
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of experiments with various equilibrium particle area
fractions ϕ0. Within the explored range 0.1 < ϕ0 < 0.4,
all profiles of ϕ scale with ϕ0 [Fig. 4(b), right].
This observation demonstrates that the crossover between
low and high Pe limits does not depend on the particle
density.
To account for these observations we turn to the

phenomenological two-phase fluid model [12], where
motion of the particles relative to the embedding liquid
is considered. In this model, particle contributions to the
bulk normal stresses drive radial particle flux j ∼ −∇ · Σp.
However, since direct measurements of Σp

iiðϕ;PeÞ are
challenging [39] and the exact form across a wide range
of ϕ and Pe values is subject to debate [2,13,40,41], the
total flux is assumed to be the sum of two asymptotic
behaviors [14]. Namely, shear driven (Pe ≫ 1) and osmotic
pressure driven (Pe ≪ 1) j_γ and jB, respectively.
In the presence of strong shearing motion (Pe ≫ 1) the

dominant hydrodynamic interactions and asymmetric pair
correlation function [Fig. 3(c)] give rise to normal stresses
Σ_γ
ii ∼ j_γj. Gradients in _γ result in particle flux j_γ ∼ −∇ · Σ_γ ,

a process often referred to as shear induced particle
migration [2,12]. Here, we limit the complexity of the
constitutive model, and use a simplified stress form
predicted for dilute 3D suspensions Σ_γ

ii ¼ λiiηj_γjϕ2

[3,12–14], where λrr and λθθ signify the normal stress
anisotropy. We adapt this 3D stress form to the quasi-2D
nature of our system by assuming that the thickness of the

colloidal layer scales with the particle radius a, and
use Σ_γ

ii ¼ aλiiηj_γjϕ2.
At vanishing Pe values, Brownian motion of the particles

results in osmotic pressure ΠðϕÞ. Any gradients in the
particle density will result in a flux of particles jB ∼ −∇Π.
In case of a 2D layer of hard spheres, osmotic pressure is
related to gðr⃗12Þ through Ππa2=kT ¼ ϕ½1þ 2ϕgð2a;ϕÞ�,
where gð2aÞ denotes the pair correlation value at particle
contact [36]. Measurements of gð2aÞ, therefore, allow us to
infer ΠðϕÞ of the suspension [42,43]. Here we neglect the
slight repulsion between the particles, and map our system
to the hard sphere case by approximating gð2aÞ with the
maximal gðr⃗12Þ value [29]. Figure 3(d) demonstrates that,
for colloidal suspensions at equilibrium (no driving), the
obtained values of ΠðϕÞ agree well with the theoretical
predictionsΠπa2=kT ¼ ϕ=ð1 − ϕÞ2 [36] and are consistent
with previous experimental observations [44].
Finally, we model the crossover between the high and

low Pe regimes and the resulting steady-state spatial
profiles ϕðrÞ (Fig. 4) by balancing the two origins of
the radial particle flux jB þ j_γ ¼ 0. In case of a 2D
rotational flow, therefore, ϕðrÞ are obtained by solving

0 ¼ ∂r

�
ϕ

ð1 − ϕÞ2 þ
1

6
λrrPeϕ2

�
−
1

6
ðλθθ − λrrÞ

Peϕ2

r
ð1Þ

with the boundary conditions ϕðr → ∞Þ ¼ ϕ0. Here, PeðrÞ
profiles are inferred from the measured particle velocities
[Fig. 2(a)], whereas λrr and λθθ remain to be determined.
Solutions to Eq. (1) describe our measurements well in a

broad range of driving rates [Fig. 4(a)] and particle
concentrations [Fig. 4(b)] for λrr ¼ λθθ ¼ 2. Specifically,
the model captures successfully the spatial crossover
between the high Pe regime and equilibrium. Any devia-
tions of the model from the scaling in ϕ0, as a result of the
nonlinearity of Eq. (1), are beyond the resolution of our
measurements.
We note that the particular choice of λii ¼ 2 is motivated

by an attempt to maintain simplicity of the model, whereas
a strict constraint on λii proves to be difficult; a similar level
of agreement between the model and measurements can be
obtained in a range between λrr ≈ 3, λθθ ≈ 1 and λrr ≈ 1,
λθθ ≈ 3. These values are consistent with other studies in
various 3D geometries [12,14,22], which show that λrr and
λθθ are typically of order unity.
While the constitutive model captures the average spatial

form of the density profiles, it fails to describe their detailed
structure. Particle excluded volume gives rise to strong
oscillations in ϕðrÞ (Fig. 4), which suggests the formation
of a layered structure. These particle correlations are
increasing with the particle density, but also smeared out
by an increasing shear rate. As the model we consider here
essentially provides a continuum description of the fluid,
density correlations on the particle scale are beyond its
range of applicability. In fact, it is compelling that a
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FIG. 4. Comparing measured density profiles with the rheo-
logical constitutive model. (a) Measured radial density profiles,
ϕðrÞ for increasing driving rate. (right) ϕðrÞ profiles collapse to a
single functional form when plotted with respect to r=rðPe ¼ 1Þ,
where rðPe ¼ 1Þ denotes the radial distance where shearing
motion and particle diffusion are comparable. (b) ϕðrÞ for
increasing equilibrium density ϕ0. All density profiles collapse
when scaled by equilibrium values ϕ0. Uncertainties in local ϕ
values are �0.01 for ϕ0 ¼ 0.13, 0.2 and �0.02 for ϕ0 ¼ 0.3, 0.4
[29]. (a),(b) Solid lines denote predictions of the constitutive
model [Eq. (1)] for λrr ¼ λθθ ¼ 2.
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continuum model provides such a good description on
length scales that are comparable to the particle size.
One unique feature of our system is that the response of

the environment (bath particles) occurs on time scales
comparable to the driving rate. This is in striking contrast to
traditional colloidal model systems studied in the context of
stochastic thermodynamics out of equilibrium [45–47]. We
suggest, therefore, that our mean-field continuum analysis
provides a starting point to explore various out-of-equilib-
rium statistical mechanics observables such as self- and
pair-diffusion, entropy production, and fluctuations in
driven systems where bath dynamics cannot be neglected.
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