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ABSTRACT

When considering flows in biological membranes, they are usually treated as flat although, more often than not, they are curved surfaces,
even extremely curved, as in the case of the endoplasmic reticulum. Here, we study the topological effects of curvature on flows in
membranes. Focusing on a system of many point vortical defects, we are able to cast the viscous dynamics of the defects in terms of a
geometric Hamiltonian. In contrast to the planar situation, the flows generate additional defects of positive index. For the simpler situation
of two vortices, we analytically predict the location of these stagnation points. At the low curvature limit, the dynamics resemble that of
vortices in an ideal fluid, but considerable deviations occur at high curvatures. The geometric formulation allows us to construct the
spatiotemporal evolution of streamline topology of the flows resulting from hydrodynamic interactions between the vortices. The streamlines
reveal novel dynamical bifurcations leading to spontaneous defect-pair creation and fusion. Further, we find that membrane curvature medi-
ates defect binding and imparts a global rotation to the many-vortex system, with the individual vortices still interacting locally.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052213

I. INTRODUCTION

We study two dimensional (2D) flows in curved biological mem-
branes arising from the dynamics of rotating embedded particles. In
particular, we explore the spatiotemporal evolution of topological fea-
tures of such 2D flows. The study is relevant in the context of biologi-
cal systems featuring vortical defects. In this work, we are primarily
motivated by proteins embedded in lipid membranes, in particular,
the rotating ATP (Adenosine Triphosphate) synthase proteins,1 abun-
dant in the endoplasmic reticulum. A detailed knowledge of such flows
will shed light on possible mechanisms of mixing in biological viscous
fluids2 as well as serve as a guiding principle to engineer molecular
rotors,3 artificially controlled microswimmers, and nano-carriers in
targeted drug delivery,4 or in wound detection and healing.5

Moreover, the rotating inclusions that we consider in much of our
analysis can be realized in experiments, e.g., by paramagnetic
microscopic particles in a rotating magnetic field,6 birefringent par-
ticles rotated by laser tweezers,7 and biological swimmers such as
bacteria, Volvox algae, and diatoms.8,9

The dynamics of physical systems in the presence of topological
defects and curvature is currently an active area of research.
Topological defects can play a major role in key macroscopic

properties of the system—be it in driving phase transitions, creating
fluid flow patterns, or the emergence of turbulence. Mostly, defect
dynamics is investigated in planar 2D systems; a few prime examples
are vortices in superfluids,10,11 Abrikosov vortex lattices in supercon-
ductors,12,13 and vortex driven Berezinskii–Kosterlitz–Thouless (BKT)
transition.14,15 The dynamics of vortices in ideal fluids, including inte-
grability, chaos, and stability analysis, is also a topic of intense
research.16–21 The natural world often features motion of defects on
curved surfaces. Point vortex dynamics in a spherical geometry may
be used as an approximation for air flow in the earth’s atmosphere
and oceans.22 In recent years, experimental advances in condensed
matter (Bose–Einstein condensates, in particular) have also opened up
the possibility to explore superfluid vortices in a curved substrate or in
optical traps.23,24 These systems thus allow a rich interplay between
curvature and dynamics of topological defects.

In the biological world, curvature and defects feature in the vast
majority of living systems, e.g., cell membranes, tumor growth, and
morphogenesis.25–27 For planar systems, topological defects play a vital
role in BKT-like phase transitions in active nematics.28 Such defects
lead to turbulent flow patterns even in such highly viscous fluids.29–35

Recently, motivated by biological examples, defect dynamics in
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nematic films has been explored on curved surfaces as well.36,37 Polar
active fluids confined to curved surfaces show flocking and topologi-
cally protected soundmodes.38

In this work, we perform a detailed study of vortical defects in
curved biological membranes. The investigation of in-plane and out-
of-plane dynamics of membranes separating two viscous fluids has
been a subject of much interest.39–42 A detailed analysis of different
modes in such membranes, including force response, mobility calcula-
tions, and many-body interactions, was performed.43–49 In particular,
a study of 2D flows and dynamics of rotors was carried out in detail in
Refs. 50 and 51. The quasi-2D nature of membranes leads to a new
length-scale (here termed the Saffman length) given by the ratio of
membrane and solvent viscosities. This length scale acts as a natural
cutoff for the logarithmic divergence of two dimensional flows.
Beyond the Saffman length, the external solvent contributes to the in-
plane dynamics, regulating the divergence.

A detailed study of biophysical transport applicable to curved
membranes was carried out in a few recent works.52–57,64,65 In particu-
lar, Refs. 52 and 53 generalized the pioneering works of Saffman and
Delbr€uck39,40 for curved surfaces of static geometry. For a spherical
membrane, particle mobility was computed. In the limit of high curva-
ture (small radius), one finds a reduced mobility, with the sphere
radius playing the role of the Saffman length. On the other hand, at
low curvature, the Saffman length still continues to regulate the loga-
rithmic divergence. Further, the study reveals the existence of a zero
mode due to curvature that imparts a global motion to the system.
The initial part of our analysis here is a direct follow-up of these
works.52,53

The work presented here outlines the following aspects of 2D
flows in curved membranes:

1. At the single particle level, we extend the works of Henle and
Levine52,53 to account for rotational flows, such as those gener-
ated by point vortices and torque dipoles, as applicable to ATP
synthase proteins.

2. We compute the relevant Green’s function in real-space in closed
form using Appell hypergeometric functions which prove
extremely useful in analyzing many-particle dynamics. We ana-
lytically predict the location of singularities in the flow field using
this approach.

3. For low curvatures, we find a surprising structural similarity
between the equations of viscous membrane hydrodynamics
sourced by rotating inclusions and the equations of point vorti-
ces in ideal fluids on curved surfaces. This analogy suggests that
ideal point vortex models may be a useful tool to gain a basic
understanding of defect mediated biological turbulent flows
observed in the viscous low Reynolds regime, see Ref. 35.

4. At high curvatures, we find that the dynamics in membranes
deviate from the ideal fluid case. There is a soft mode due to cur-
vature which imparts a global rotation to the many-body system.

5. We provide explicit formulas for the dynamical equations and
flows [Eqs. (18) and (19)] and the rotation rates [Eq. (25) and
(36)] in the full parameter space of the biological model.

6. We construct a geometric Hamiltonian describing the dynamics,
with associated conservation laws. We use the Hamiltonian to
construct the spatio-temporal evolution of the streamlines result-
ing from the hydrodynamic interactions between point rotors.

7. For curved membranes, we find there are new vortical defects of
positive index (centers); this is in contrast to the planar situation.
The number of such new stagnation points is strictly governed
by the Euler characteristic of the surface, consistent with
Poincare index theorem.

8. For many point rotors with varying circulations, we find novel
dynamical bifurcations leading to defect-pair fission and fusion.
We are able to demonstrate all these effects with a relatively
small number of rotors. Further, we observe that the global rota-
tion imparted by the membrane curvature can drive the binding
of defects with opposite index, similar to activity driven defect
binding and unbinding phenomena observed in 2D nematic
fluids.28

9. From an experimental point of view, one may expect to achieve
the transition from the low to high curvature regime in a more
controlled fashion by tuning the solvent viscosities, keeping the
radius of the membrane fixed. Viewed this way, the high curva-
ture regime may be achieved by reducing the external solvent
viscosity compared to that of the internal solvent.

While our emphasis in this work has been on 2D viscous flows
on curved membranes and associated streamline topology, it is worth
mentioning the parallel efforts on 3D viscous Navier-Stokes equa-
tions.66–68 Analytic approaches have been used to explore chaotic
streamlines, complicated Lagrangian structures,69 and stationary
points70 in many interesting flows, for example, the ABC (Arnold,
Beltrami, and Childress) flows.

The paper is organized as follows: In Sec. II, we present a short
review of the basic equations for viscous hydrodynamics on curved
membranes. In Secs. IIA–IIC, we provide typical examples of the 2D
fluid flows in spherical membranes due to three types of sources: a
point force, a point torque, and a torque dipole. The detailed calcula-
tions are presented in Appendixes A–C. In particular, Sec. II B explores
the connections to equations arising in vortex dynamics in ideal fluids
on curved surfaces. The rotating solutions allow us to construct a
Hamiltonian description for a system of rotating inclusions embedded
in the membrane. This Hamiltonian description is presented in Sec.
III B along with basic equations Sec. IIIA to explore the streamline
topology of the hydrodynamic flow fields. These equations are used to
construct the spatiotemporal evolution of streamline topology of the
in-plane flow fields. We explore the streamline flows for different vor-
tex circulations along with an analytic understanding of the associated
stagnation points. Next in Sec. IV we present some interesting scenar-
ios of spontaneous creation of defect pairs and defect fusion that arise
in such systems in the chaotic regime of many interacting point rotors.
Finally, in Sec. V and VI, we conclude with possible generalizations.

The Appendix contains many details of the calculations and for-
mulas used in the main text. Appendixes A–C describe the full struc-
ture of the real space Green’s functions used in our study, while
Appendix E discusses the pole structure of the Green’s function in
Legendre basis. Appendix D supplements an analytic investigation of
stagnation points and streamline topology carried out in the main text
for the situation of two vortices.

II. SETUP: VISCOUS HYDRODYNAMICS IN CURVED
MEMBRANES COUPLED TO EXTERNAL SOLVENTS

Let us start by describing the hydrodynamic equations for curved
membranes. We use the pioneering works of Saffman and
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Delbr€uck39,40 as adapted to a spherical membrane.52,53 We approximate
the membrane as a two-dimensional viscous fluid surrounded above
and below by three-dimensional viscous fluids. We also assume strictly
tangential flows within the membrane. In such situations, the appropri-
ate generalization of the Stokes equations describing 2D flows is

Dava ¼ 0; rext
a ¼� g2d Kð~xÞva þ DlDlva

� �
þ Dap

þ r3d
az jz!0� � r3d

az jz!0þ

� �
; (1)

where x represents a general coordinate on the surface, va is the in-
plane 2D fluid velocity (a runs over surface coordinates), and g2D
denotes the viscosity of the 2D membrane fluid. D is the two dimen-
sional covariant derivative which generalizes the partial derivative of
flat space, Kð~xÞ is the local Gaussian curvature, p is the local mem-
brane pressure, r3D denotes the bulk fluid stress tensor, and z denotes
a generalized co-ordinate in the normal direction to the surface. The
first of the two equations in Eq. (1) ensures incompressibility of the
membrane fluid, while the second equation is a stress balance condi-
tion on the membrane surface. The point source embedded in the
membrane provides rext. The external source term is balanced by the
stress provided by the 2D membrane fluid and the external solvents
above and below the membrane. In the limit of vanishing curvature,
K¼ 0, one recovers the usual Stokes equations. In curved surfaces, the
covariant derivatives fail to commute, originating the curvature term
Kð~xÞ. For more details, see Appendix A.

These equations need to be supplemented by the appropriate
Stokes equations for the 3D outer fluid,

g6r2v6 ¼ r6p
6; r � v6 ¼ 0; (2)

where vþ (v�) is the fluid velocity above (below) the membrane, with
similar notation for pressure p6 and viscosities g6. One can define
two length scales given by the ratio of membrane and solvent
viscosities

k6 ¼
g2D
g6

: (3)

The curvature introduces a new scale in the problem. In spherical
membranes for example, this will be the radius R. The coupling
between the 2Dmembrane flows and the 3D external solvents is medi-
ated via the no-slip boundary condition and by the stress balance on
the membrane surface [the last term in Eq. (1)]. For membranes of
arbitrary shape, these equations can be solved numerically, e.g., see
Ref. 64. However, in the simpler situation where the curvature is con-
stant, one can analytically extract flows, which we describe next.

The incompressibility requirementDava ¼ 0 allows us to express
the flow field in terms of a stream function as follows:

vaðxÞ ¼ �acD
c/ð~xÞ; (4)

where �ab is the antisymmetric Levi–Civita symbol. One thus needs to
solve for /ð~xÞ, given a point source rext, taking into account the mem-
brane curvature and boundary conditions. As shown in detail in Refs.
52 and 53 (see also our Appendixes A–C), such a response calculation
is conceptually simple. One needs to invert the curved surface Laplace
operator in the presence of the curvature and traction terms.77 For a
non-trivial spatially varying curvature K(x), a Fourier decomposition

can be done numerically, but it requires knowledge of the spectrum.
For surfaces of constant curvature, the spectrum is often known. One
can use the known eigenfunctions to perform the inversion in Fourier
space. For example, for a sphere, one decomposes the above equations
in the basis of spherical harmonics, taking into account the stick and
stress boundary conditions. Henle and Levine52,53 express the final
solution of the stream function in terms of such eigenmodes. Using
Appell hypergeometric functions, we are able to perform the inverse
Fourier transform and find closed-form expressions for the stream
function in real space. We present a detailed description in
Appendixes A–C for each of the sources: point force, point torque,
and a torque dipole, respectively.

Before proceeding, let us briefly mention some general topologi-
cal constraints that the flow fields on the spherical membrane must
satisfy. First, the hairy ball theorem implies that flow fields on the
spherical membrane must feature stagnation points where the velocity
field vanishes. Second, each of the singular points of the flow can be
assigned an index which keeps track of the winding of the flow field
around the core of the singularity. The sum of these indices [We will
present a more general criterion for the situation of many embedded
particles, see Eq. (21) in Sec. III B.] must equate to 2, the Euler charac-
teristic of the sphere (Poincare index theorem). In all the examples
involving single inclusions that we are about to study, we will observe
these topological features in the flow fields.

We now describe the flow fields resulting from a point force,
point torque, and torque-dipole, one by one.

A. Velocity field due to a point force on the spherical
membrane

The main body of this work concerns vortices in a membrane,
but for completeness and consistency, in this section, we reproduce
the results of Henle and Levine for a point force acting on a spherical
membrane. The velocity field at an arbitrary point ðh;/Þ on the sphere
due to a point force localized on the membrane surface at ðh0;/0Þ is
summarized by an Oseen tensor on S

2 given by v ¼ Gðh; h0;/;/0ÞF,
where the different components of the Green’s function can be
expressed in terms of double derivatives of a function S,

Ghh0 ¼
csc h csc h0
4pg2D

@/@/0
S; Gh/0

¼ � csc h
4pg2D

@/@h0S;

G/h0 ¼ �
csc h0
4pg2D

@h@/0
S; G//0

¼ 1
4pg2D

@h@h0S;
(5)

and the function S is defined in the basis of Legendre polynomials,

S :¼
P1

l¼1
ð2lþ1Þ
sl lðlþ1Þ Plðcos cÞ, where sl ¼ lðl þ 1Þ � 2þ R

k�
ðl � 1Þ

þ R
kþ
ðl þ 2Þ, and cos c is the cosine of the geodesic angle between the

source at ðh0;/0Þ and response at ðh;/Þ,

cos c ¼ sin h sin h0 cos ð/� /0Þ þ cos h cos h0: (6)

The function S thus varies with the geodesic angle and the physical
parameters, namely, the sphere radius, and the membrane and solvent
viscosities. The full structure of the function S in real space is presented
in Appendix A in terms of Appell hypergeometric functions. With the
knowledge of the real space Green’s function in the full parameter
space at hand, we now plot the resulting flows due to a Stokeslet (point
force) localized on the spherical membrane. In these plots we have
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chosen gþ ¼ g� ¼ g3d in Eq. (3). Thus, one can compare the radius
of the sphere R with respect to the unique Saffman Length k ¼ g2d

2g3d
.

There are two distinct regimes R > k (low curvature) or R < k (high
curvature). (The ratio k=R is often quoted as the Boussinesq number
in the surfactant dynamics literature.)

In the low curvature regime, the velocity field exhibits a
dipole-like structure around the point of application of the force.
The dipole has a topological indexþ 2 which agrees with the Euler
characteristic of the sphere. As the curvature is increased, the
dipole structure breaks into twoþ 1 vortices which migrate away
to diametrically opposite points (Fig. 1). These features were pre-
dicted first in Refs. 52 and 53 and generalized to lipid bilayers
with slip velocity in Ref. 57. We observe that our real-space
Green’s function (Appendix A) also reproduces these effects. This
provides a consistency check of our summation procedure
explained in Appendix A.

Similarly, for a force dipole, one expects the flow field to be char-
acterized by four vortical defects surrounding a saddle of negative
index at the core of the dipole. There must exist an additional saddle
of negative index such that the net index isþ 2, the Euler characteristic
of the sphere. This additional saddle will be absent in the plane. Such
force dipoles are used as models for a wide class of active inclusions,
colloids, and microswimmers.58–60

B. Velocity field due to a point torque on the spherical
membrane

The velocity field at a point ðh;/Þ produced by a point torque of
circulation s localized at ðh0;/0Þ on the sphere can be expressed as

v ¼ s
g2D

rS
2

?

h i
w; (7)

where ½rS2

? � ¼ ðĥ 1
R sinh @/ � /̂ 1

R @hÞ and w represents the dimension-
less stream function. In terms of Legendre modes, w is given by

w h;/; h0;/0½ � ¼
X
l

ð2l þ 1Þ
4p sl

Plðcos cÞ; (8)

where cos c ¼ sin h sin h0 cos ð/� /0Þ þ cos h cos h0 is the cosine of
the geodesic angle between the source and response locations. The real
space representation of w in the full parameter space is presented in
Appendix B. There are two different representations of the stream
function: one valid at low curvatures [Eq. (B10)] and the other valid at
high curvature [Eq. (B11)].

We now focus on the associated topology of the flow-field due to
the rotating inclusion localized at the north pole, see Fig. 2. We find
that a new vortical defect of positive index (center) develops at the
south pole to make the total index þ2 as required by the topology of
the sphere.

Let us briefly comment here on an interesting connection
between the point vortex flows we study in this viscous setup and the
ideal point vortex problem on curved surfaces. For simplicity, let us
consider the equation of stress balance for viscous hydrodynamics of
the membrane fluid (with no external solvent78) in the presence of a
point rotor of unit strength (see Appendix B where we show that the
membrane pressure vanishes in this situation),

g2D KðxÞ þ Dð Þva ¼ �abD
b dðh� h0Þdð/� /0Þ

R2 sin h|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
x

; (9)

where we have defined x as suggested in the above equation.
In terms of the scalar stream function defined as va ¼ �abDb/,

the above equation reads

g2Dð2KðxÞ�acD
c/þ �acD

cD/Þ ¼ �acD
cx: (10)

In the limit of low curvature where K(x) can be ignored, we are left
with [For the spherical membrane of constant curvature, the complete
equation reads w ¼ g2D

2
R2 /þ D/
� �

]

g2DD/ ¼ x: (11)

This equation is identical to that of a point vortex in an ideal fluid on a
curved surface, where D is the surface Laplace–Beltrami operator. Due
to this equivalence, we expect that at low curvatures (and hence on the
plane in particular), the response to rotating inclusions in a viscous
fluid is similar to point vortex flows in an ideal fluid. The situation in
the biological model we consider here departs from the ideal vortex
problem once the curvature term becomes important. Indeed, we find

FIG. 1. Streamline plot of the velocity field in the low (top) and high (bottom) curva-
ture regimes, in response to a force localized on the spherical membrane. On the
left, the flow field is shown in a h;/ chart while on the right, the flow field is
wrapped on a spherical membrane. Location of the force is marked in red. Note the
creation of two vortical defects around the force. In the top row (low curvature
regime), we show the flow field for a point force localized at h ¼ 1:5. In the bottom
row (high curvature regime) for a point force localized at h¼ 0, the vortices migrate
to the equatorial regions.
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that at low curvatures where the radius of the sphere is much larger
compared to the Saffman length, the flows resemble those of ideal
point vortex problem on the sphere. However, as the radius decreases,
the curvature contributes to a zero mode that imparts a global rotation
to the many body system, while the rotating inclusions individually
still continue to interact in a manner similar to local point-vortex like
interactions. At high curvatures, due to the effect of the global rotation,
the flow is no longer monotonically decreasing, see Fig. 2.

C. Velocity field due to a torque dipole on the spherical
membrane

Rotating inclusions that arise in biological examples feature no
external torque, e.g., rotor proteins such as ATP synthase. To account
for this additional structure, we also construct a model of counter-
rotating torque-dipole.50,51 On a spherical membrane, the solution is
constructed in Appendix C. The dynamics are very similar, mainly
giving rise to a faster spatial decay. The solutions are identical in terms
of their topology, and thus, in the rest of this paper, we will focus on
the solutions due to point rotors, but the Appendix outlines the results
for torque-dipoles as well.

D. Emergence of global rotation at high curvature

Having understood the flow fields due to simple source terms on
the spherical membrane, we now illustrate the emergence of the global
rotation in the high curvature regime for all three situations. This
global rotation was first reported in Refs. 52 and 53 for a Stokeslet. In
all the situations we studied, the dimensionless stream function on the
spherical membrane has the generic structure in the basis of Legendre
polynomials,

w h;/; h0;/0½ � ¼
X
l

fl
4p sl gl

Plðcos cÞ; (12)

where fl and gl are polynomials in Legendre modes denoted by l and
sl ¼ lðl þ 1Þ � 2þ R

k�
ðl � 1Þ þ R

kþ
ðl þ 2Þ. The geodesic angle

between the source and response locations is denoted by c. One can
understand the emergence of the global rotation from the common
denominator sl arising in all three situations. For simplicity, let us
assume the Saffman lengths associated with external and internal sol-
vents to be the same and denote it by k. The classification of high and
low curvature regimes is then simply determined by the ratio k=R.

In the high curvature limit of k=R� 1,

sl � lðl þ 1Þ � 2: (13)

The zero mode l¼ 1 dominates the Legendre sum in the stream func-
tion of Eq. (12) and generates the global rotation. To see this, let us
consider the situation where we place a rotating inclusion at the north
pole. The stream function in Eq. (12) leads to a velocity field with flows
only in the azimuthal direction given by

v/ ¼
s

4pg2dR

X
l

ð2l þ 1ÞP1
l ðcos hÞ

sl
; (14)

where P1
l ðcos hÞ denotes the associated Legendre function of first

order. In the limit of high curvature, the zero mode l¼ 1 dominates
the sum, and we get

v/ ¼
s sin h
4pR2gþ

; (15)

which corresponds to a global rotation of the flow with

X ¼ s
4pR3gþ

: (16)

Let us note that the global rotation rate is purely regulated by the exter-
nal solvent. This can be physically argued as follows: In the limit of high
curvature, the zero mode causes the entire spherical membrane along
with the internal solvent to rotate like a rigid body. The zero mode leads
to zero dissipation in the membrane and internal fluid. Hence, the pri-
mary shear in this situation is provided by the external solvent. In gen-
eral, one expects the global rotation to be present for all closed compact
membrane surfaces with a finite volume of fluid inside (internal solvent).
However, for non-compact surfaces, such global rotation is not possible
because the fluid velocity field has to decay at infinity.

One can also use the asymmetry of external and internal solvents
at a fixed radius R to generate this global rotation. This happens when
kþ � k�,

sl ¼ lðl þ 1Þ � 2þ R
k�
ðl � 1Þ þ R

kþ
ðl þ 2Þ

� lðl þ 1Þ � 2þ R
k�
ðl � 1Þ: (17)

Let us note that l¼ 1 continues to be the zero mode in this situation
leading to the global rotation. This is unlike the opposite limit when
kþ � k�. Viewed this way, the high curvature regime corresponds to
reducing the external solvent viscosity such that gþ � g�.

It is interesting to note how our real space representation of the
stream function Eq. (7) in terms of Appell hypergeometric functions

FIG. 2. Flow fields due to a vortex localized at the north pole. Top row shows the
low-curvature case [Eq. (B10)] and bottom row shows the high-curvature one [Eq.
(B11)]. On the left, the magnitude of the azimuthal velocity v/ is shown in the h
direction. In the high curvature case, the flow develops a local maximum due to the
effect of the global rotation, shown as a gray line (see further discussion in Sec.
II D). Right panels show the flow field wrapped on a spherical membrane.
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capture the global rotation. As shown in Appendixes B and C, depend-
ing on the roots of sl¼ 0 (the roots are analyzed in Appendix E), the
Legendre sum defined in Eq. (8) leads to two different representations
of the stream function in real space. One of these representations [Eq.
(B10)] is valid in the regime of low curvature, while the other [Eq.
(B11)] is valid in the high curvature regime. The appropriate stream
function in the high curvature regime indeed shows a dominance of
the global rotation term, see Fig. 2.

III. STREAMLINE TOPOLOGY FOR MEMBRANE
VORTICES

In this section, we set up the equations needed to explore the
streamline topology of flows on the biological membrane due to rotat-
ing inclusions.

A. Dynamic equations for an ensemble of membrane
vortices

Let us consider N rotating inclusions embedded in a spherical
membrane with viscosity g2d , surrounded by external solvents with
viscosities g6. The evolution equations for purely hydrodynamic inter-
actions between the vortices are given by

_hi ¼
1

g2dR2

XN
j6¼i

sj
sin hi

w0 cij½ � @/i
cij½ �;

_/ i ¼ �
1

g2dR2

XN
j 6¼i

sj
sin hi

w0 cij½ � @hi cij½ �;
(18)

where w0 is the derivative of the stream function defined in Eq. (7) for
point rotors, with the explicit structure in terms of Appell hypergeo-
metric functions given in Appendix B by Eqs. (B10) and (B11) for the
low and high curvatures, respectively [see Eqs. (C21) and (C22) in
Appendix C for the corresponding expressions for torque dipoles]. Let
us note that the stream function has two different representations that
are dictated by curvature. While performing the dynamical simula-
tions, one needs to insert the appropriate representation of w into Eq.
(18). Finally, cij is defined in Eq. (6).

Let us add some comments on the absence of a self-drive term in
Eq. (18). This can be argued from symmetry considerations. Due to
spherical symmetry, there is no preferred direction and a single vortex
does not move. This argument works for the planar situation as well.
However, in generic surfaces with no (or restricted) symmetry, one
needs to treat the self-interaction term with a proper regularization
procedure. This will in general lead to a self-drive term. For the spheri-
cal membrane however, such a regularization leads to a constant (due
to symmetry) and has no effect on the dynamics.

We will be interested in the flow fields resulting from the above
dynamics as well. For this purpose, one constructs the hydrodynamic
velocity field at any given point p via superposition (taking into
account the contributions from all point rotors).

vhp ¼
1

g2dR

XN
j

sj
sin hp

w0 cpj½ � @/p
cpj½ �;

v/p
¼ � 1

g2dR

XN
j

sj w0 cpj½ � @hp cpj½ �;
(19)

where cpj denotes the geodesic angle between ðhp;/pÞ and ðhj;/jÞ,
and now the sum runs over all vortices.

B. Hamiltonian formulation

The dynamical equations [Eq. (18)] can be cast in terms of a geo-
metric Hamiltonian. In terms of canonical coordinates, Qi ¼

ffiffiffiffiffiffi
jsij

p
/i;

Pi ¼
ffiffiffiffiffiffi
jsij

p
cos hi, Eq. (18) can be re-written as79

_Qi ¼ @PiH; _Pi ¼ �@QiH;

H ¼ 1
R2g2D

X
i<j

sisjw cij½ �:
(20)

In the torque dipole case, the stream function is given by Eq. (C18).
In general, it is expected that the dynamics of the rotating inclu-

sions on a surface of a non-trivial topology and curvature will be dif-
ferent from the planar problem. We expect significant changes in the
streamlines of the flow fields as well. Let us recall that in the low curva-
ture limit, there exists a structural similarity between the equations of
viscous hydrodynamics (sourced by point rotors) with vortices in an
ideal fluid [Eq. (11)]. This motivates us to borrow some terminology
and concepts from vortex literature16–21 that will prove useful:

1. Hairy Ball Theorem. The theorem forbids the existence of a
nowhere vanishing vector field on the sphere, i.e., there is at least
one point where the flow field vanishes on the sphere.

2. Poincare Index Theorem. The topological defects in the flow field
on a closed, compact surface can be assigned an index corre-
sponding to the winding of the field around the singular core.
The theorem implies that the sum of the indices over all singu-
larities is equal to the Euler characteristic of the surface. For a
spherical membrane (or membranes deformable to a sphere), the
Euler characteristic is 2. As we will see later, the topology of the
spherical membrane leads to creation of Nc new centers (vortex
defects of index þ1 where the velocity field vanishes, i.e., a stag-
nation point of the flow-field), a phenomenon not observed on
the plane.18 Such centers have unit positive index. In addition,
one has NS saddles of unit negative index (an anti-vortex).
Further, each of the N rotating inclusions that we consider con-
tributes a positive index of þ1. The index counting thus
demands

N þ Nc � Ns ¼ 2: (21)

The circulation s of the vortices is independent of the index. In
particular, both positive and negative circulations have the same
index þ1.

3. Integrability and the Liouville–Arnold theorem. A Hamiltonian
system with 2N dimensional phase-space is integrable if there
exist N independent integrals of motion which are all mutually
Poisson commuting, i.e., they are in mutual involution. The
Hamiltonian we constructed in Eq. (20) has the same set of sym-
metries as ideal point vortices on a sphere which have three
mutually commuting conserved quantities. Thus, the system
loses integrability for N � 4 vortices, and the N¼ 4 situation is
integrable if the total circulation of vortices is zero.19

We are now ready to discuss the dynamics of the vortices and
spatiotemporal evolution of vortical defects in the flows within the bio-
logical membrane. The basic methodology we adopt here is very sim-
ple: we first simulate the dynamics of the vortices as given in Eq. (18)
and feed the dynamic locations of the vortices into Eq. (19) to get the
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hydrodynamic vector field ðvh; v/Þ. Using Mathematica,71 we next
plot the streamlines associated with this flow field in the ðh;/Þ chart.80
In order to understand the dynamics and flows better, we restrict our
discussions in this section to two vortices and discuss the many vortex
situations in Sec. IV. We separate the discussion of two vortices into
regimes of low and high curvature. In each regime, we first consider
the simple situation of two vortices with same (opposite) circulations s
and discuss the dynamics and the associated streamline topology of
the flow field. In appropriate places, we comment on important dis-
tinctions from the planar dynamics and flows. From our discussions
near Eq. (11), we expect the dynamics and flows to be similar to ideal
vortices in the low curvature regime. The flow departs from ideal vorti-
ces once curvature becomes important.

C. Low curvature regime

A single vortex does not move due to spherical symmetry. The
dynamics becomes interesting once we have two vortices or more. To
understand the dynamics of two vortices better, we first note that the
Hamiltonian Eq. (20) preserves the chord distance C12 ¼ j~X 2 � ~X 1j
between the vortices and they orbit around each other. The rotation
rate can be easily estimated by converting the dynamical equations for
two vortices [Eq. (18)] into Cartesian form,

d
dt
~X 1 ¼

s2
Rg2D

w0 c C12½ �½ �
sin c C12½ �½ �

~X 1 	 ~X 2

R2
;

d
dt
~X 2 ¼

s1
Rg2D

w0 c C12½ �½ �
sin c C12½ �½ �

~X 2 	 ~X 1

R2
;

(22)

where c½C12� is related to the chord distance C12 ¼ j~X 2 �~X 1j via
c½C12� ¼ 2 arcsin½C12

2R �.
The center of vorticity vector ~M in this situation is given by

~M ¼ s1~X 1 þ s2~X 2

s
; (23)

where s ¼ s1 þ s2 is the total circulation. It is easy to see that Eq. (22)
can be written using the above vector ~M as

d
dt
~X 1 ¼

1
Rg2D

w0 c C12½ �½ �
sin c C12½ �½ �

~X 1 	 s~M
R2

;

d
dt
~X 2 ¼

1
Rg2D

w0 c C12½ �½ �
sin c C12½ �½ �

~X 2 	 s~M
R2

:

(24)

From Eq. (24), we can read the rotation rate at low curvature x2vortices
LC

as

X2vortices
LC ¼ sj~M j

R3g2D

w0 c C12½ �½ �
sin c C12½ �½ � : (25)

Let us note that the same formula also holds for the torque-dipole case
with appropriate w given in Appendix C. We now elaborate on the
dynamics for two vortices in Fig. 3.

1. Same circulation

In this situation, the vortices orbit each other with an angular fre-
quency x2vortices

LC given by Eq. (25). In Fig. 3, we show an example of an
orbit (the trajectory of the vortices) and the associated flow fields at

two instants of time. One observes that in addition to the original cen-
ters created by the vortices themselves, the flow field exhibits a new
center and a saddle where the velocity vanishes. Overall the index adds
up to 2, consistent with Poincare index theorem, as expected from the
topology of the spherical membrane. In Fig. 4, we show how the loca-
tion of stagnation points change as we change the distance between
the vortices (of same circulation). In particular, let us note that when
the distance is p then there is a continuum of stagnation points formed
along the mid-line between them (the left most figure in lower panel
of Fig. 4). The saddle is always formed between the vortices, as can be
seen also from continuity of the flow.

2. Opposite circulation

In this case, the vortices move together, such that the perpendicu-
lar bisector of the line joining them follows a geodesic. Interestingly,
the flow fields exhibit no new center or saddle. The Poincare index
theorem is still satisfied since the index contribution from the two vor-
tices of opposite circulation is 2. Let us mention that Kimura17 pre-
dicted that a vortex dipole (vortices of equal and opposite strength
placed close to each other) traces a geodesic in all closed Riemann sur-
faces deformable to the sphere. For our spherical membrane, we
indeed find this property holds true, see Fig. 5.

3. Calculation of stagnation points

We now proceed to a calculation of the locations of the stagna-
tion points. As shown in Appendix D, one can project the dynamical
equations, Eq. (18), via stereographic projection on the plane. Using
complex coordinates to denote the locations of the vortices, the equa-
tion of a tracer particle in the presence of the vortices can be cast in a
complex notation,

d
dt

�zp ¼
i

g2DR2

ð1þ jzpj2Þ2

2
@zpHp; (26)

where zp denotes the location of the tracer particle, and Hp is defined
using the streamfunction w (with the structure presented in Appendix
B; see Appendix C for the torque dipole case),

Hp ¼
XN
j

sj w cpj½ �; (27)

where the geodesic distance in complex notation is given by

cpj ¼ arccos
ð1� jzpj2Þð1� jzjj2Þ þ 4Re zp�zj½ �

ð1þ jzpj2Þð1þ jzjj2Þ

 !
: (28)

It follows that solving for the stagnation points amounts to finding sol-
utions to

d
dt

�zp ¼ 0: (29)

As shown in Appendix D, this amounts to solving an equation of the
general form

XN
j

sj F zp; zj½ �G zp; zj½ � ¼ 0; (30)
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where the factors F and G arise from the derivative of the stream func-
tion, i.e., @zpw ¼ @w

@ cos c @zp cos c :¼ F 	 G. Let us note that although F
is dependent on the choice of parameters, the factor G is purely geo-
metric. To proceed further, we need to compute F from the

appropriate stream function w. The full structure of the stream func-
tion in Appendix B makes the analysis somewhat complicated; how-
ever, one can choose a set of parameters for the model to simplify the
stream function. As explained in Appendix D, for a particular choice

FIG. 4. Location of stagnation points for various relative distances between two vortices of the same strength. Plots are shown for D/ ¼ 2; 3; p in the low curvature regime in
the h� / plane. A saddle stagnation point (anti-vortex) is shown between the two positive vortex defects. A continuum of stagnation points occur at / ¼ p shown in the right-
most figure.

FIG. 3. Streamline plot for two vortices at the low curvature regime, both released at the equator with one at / ¼ 0:5 and the other at / ¼ 1:5 in the low curvature regime,
top row with same strength and bottom row with opposite strength, red marks the vortex with the negative circulation. Color code throughout the text signifies the magnitude of
the velocity, going from dark blue to white with increasing magnitude.
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g2D ¼ 3=2; g� ¼ 1; gþ ¼ 2;R ¼ 1 for which k=R ¼ 1=2, the stream
function is given a relatively simple expression [Eq. (D11)].
Specializing to the case of two vortices on the spherical membrane, let
their positions in the complex plane be denoted by z1 and z2. Since the
stagnation points are always constrained to lie on the great circle join-
ing the two locations,19 we can essentially map the dynamics to the

unit circle on the complex plane. (Via stereographic projection, the
azimuthal angle on the spherical membrane maps to the polar angle
on the plane.) Using polar representation z ¼ rei

~h , we choose without
loss of generality

z1 ¼ 1; z2 ¼ ei/; s1 ¼ 1; s2 ¼ s: (31)

Plugging Eq. (31) into Eq. (30), we convert it to an effective two
parameter problem where the stagnation point zp ¼ eihp has to be
solved as a function of the relative circulation s and the location of the
second vortex parametrized by / from the equation (see Appendix D
for a complete derivation)

I ¼ f cos hp
� 	 1

4
ð1� e�2ihpÞ þ sf cos ðhp � /Þ

� 	
	 1
2

e�i/ � cos ðhp � /Þe�ihp
� �

¼ 0; (32)

where

f ¼
10� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ x �1þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ 15 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p� �

x þ 30x ðx2 � 1ÞarcCoth 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p� �� �

12pðx2 � 1Þ : (33)

We can now systematically search for the location of the new stagnation
points hp as a function of the relative vortex circulation s and relative dis-
tance between the two original vortices /. As an example, we plot the
results for / ¼ 2:8, and s¼ 1. We plot the real and imaginary parts of I
in Eq. (32) as a function of h. The common zeros of the plots on the left
of Fig. 6 are in good agreement with the streamline plot on the right.

D. High curvature regime

As we saw in Sec. II, the curvature term in Eq. (1) imparts a
global rotation to the system. For a single vortex, we predicted this rate
in Eq. (16). In the generic situation of more than one interacting vorti-
ces with varied circulations, one can proceed as follows:

In the high curvature regime, we saw in Sec. IID that the l¼ 1
term dominates the Legendre sum in Eq. (12). This term, as we saw
in earlier sections, leads to a global rotation. The global rotation rate
for a system of many rotating inclusions can be easily extracted by
noting that for R� k, as far as global effects are concerned, one can
ignore the local hydrodynamic interactions and keep only the global
term in the stream function appearing in the dynamical equation,
Eq. (18), i.e.,

w0 Cij½ �
sin c Cij½ �½ �

� g2D
4pRgþ

8 ði; jÞ: (34)

Using this approximation in the high curvature regime gives

FIG. 5. Vortex dipole at low curvature traces a geodesic.

FIG. 6. Zeros of the real and imaginary parts of the L.H.S. of Eq. (32) as a function of hp. The new stagnation points are located at around the common zeroes, i.e.,
hp ¼ 1:4; 4:5, marked with a red cross in the streamline plot on the right.
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d
dt
~Xi ¼

X
j 6¼i

sj
Rg2D

w0 Cij½ �
sin c Cij½ �½ �

~Xi 	 ~Xj

R2
�
X
j

sj
Rg2D

g2D
4pRgþ

~Xi 	~Xj

R2

¼ ~Xi 	
P

j sj~Xj

4pR4gþ
: ð35Þ

Thus the global rotation rate is

xNvortices
HC � sj~M j

4pR4gþ
; (36)

where ~M ¼
PN

j
sj~X j

s denotes the conserved center of vorticity vector,
and s is the total circulation s ¼

P
j sj. Let us note that the above rate

agrees with the one found for a single vortex Eq. (16). The same for-
mula holds for the case of torque-dipoles, with the replacement s! sd

R
where d is the finite distance between the counter-rotating inclusions,
separated along the sphere radial direction [see Eq. (C18)].

The essential features for two vortices of same (opposite) circula-
tion are detailed below.

1. Same circulation

The dynamics of two vortices is similar to the low curvature case,
with the rate given by Eq. (25), but with the appropriate stream function

for the high curvature regime, Eq. (B11). In the limit of high curvature,
this rate can be approximated by our estimate [Eq. (36)]. In addition, the
flow field develops two new centers due to the global rotation. The two
vortices orbit around one of the global centers. Thus, compared to the
low curvature regime, there is now an extra center and saddle appearing
in the high curvature regime. The location of these new global centers is
universal and will be calculated soon. As the curvature is increased, the
saddles (anti-vortex) move toward the original vortices. This is reminis-
cent of a binding event of activity driven defects in nematic fluids.28 For
membrane vortices, the binding is mediated by curvature vs the nematic
case where it is driven by elasticity. Figures 7 and 8 show the new stagna-
tion points. Zoomed images show that curvature drives the newly
formed saddles (of index�1) closer to the original vortices (indexþ1).

2. Opposite circulation

Here, as well the global rotation, creates two new centers. Unlike
the case of same circulation, the two vortices now orbit around differ-
ent global centers. Note that the new saddles are formed between the
original vortices and the new global centers, as required by continuity
of vector fields. The location of these new global defects is again uni-
versal and independent of the details of the model (see below). Here,
curvature also drives the newly formed saddles toward the original
vortices, each of which now orbits a different global center.

FIG. 7. Streamline plot for two vortices, both at the equator in the high curvature regime, top row with same strength (positioned at / ¼ 0:5 and / ¼ 3:3) and bottom row
with opposite strength (positioned at / ¼ 0:5 and / ¼ 1:5).
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3. Location of global centers

In the regime of high curvature, the stagnation points are still
given by Eqs. (29), and Eq. (30) as in the low-curvature regime; only
the streamfunction used is the one appropriate for high curvature, see
Eq. (B11) in Appendix B. However, unlike the low curvature regime,
there is no simple choice of parameters which simplifies the functional
form of the stream function. One can still determine the location of
the global defects, since in the limit where the stream function is domi-
nated purely by the global term, one can approximate F in Eq. (30) as
follows:

F ¼ dw
dðcos cÞ � �

g2D
4pRgþ

; (37)

while G is a purely geometric factor, same as the low curvature regime
(see Appendix D),

G zp;zj½ � ¼
ð1�jzjj2Þð�2�zpÞþ4 ð1þjzpj2Þ

�zj
2
�Re zp�zj½ ��zp


 �
ð1þjzjj2Þð1þjzpj2Þ2

: (38)

Using these F and G, the equation for stagnation points zp, given by
Eq. (30) simplifies considerably and is purely determined by the geo-
metric function G,

Gðzp; 1Þ þ sGðzp; ei/Þ � 0

) 1
4
ð1� �z2pÞ þ

s
2

e�i/ � Re zpe
�i/

h i
�zp

� �
� 0 : (39)

Substituting zp ¼ eihp in the above, we get

1
4
ð1� e�2ihÞ þ s

2
e�i/ � cos ðh� /Þe�ih
� �

¼ 0; (40)

which has the following solutions:

hp ¼ 6arccos 6
1þ s cos/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s2 þ 2s cos/
p" #

: (41)

For example, for s ¼ �1 and / ¼ 1, this yields hp ¼ 2:0708;
1:0708;�2:0708;�1:0708. The corresponding streamlines in Fig. 9
show the global centers to be located at hp ¼ 2:0708 and
hp ¼ �1:0708 ð¼ þ5:21239Þ. This coincides with two of the four sol-
utions Eq. (41). The other two solutions are spurious because of our
approximation [Eq. (37)] and will be removed once the local correc-
tions to Eq. (37) are incorporated, similar to our low curvature compu-
tation. As expected, Eq. (41) is independent of many details of the
model and is only controlled by the vortex circulations and location.

IV. MANY VORTICES

In this section, we briefly discuss the situation of many rotating
inclusions with varied circulations, with the dynamics and flow fields
described by Eqs. (18) and (19), respectively. For many vortices,
(Integrability is lost beyond N¼ 3 vortices. For N¼ 4 vortices, the sys-
tem is still integrable if the sum of the circulations vanishes.) the
dynamics is ergodic, and it is in general difficult to perform an analytic
investigation. However, one can still simulate the dynamics,

FIG. 8. Streamline plot at t¼ 0 for two vortices, one at h ¼ p=2;/ ¼ 0:5 and other at h ¼ p=2;/ ¼ 3:3 in the high curvature regime R=k � 10�3 for vortices of same cir-
culation. On the left, we see the appearance of two global centers as expected (main text). The original vortices orbit around the global center formed on the lower half of the
leftmost figure. The newly formed saddles are tightly bound to the original vortices, as shown in the zoomed images on the right, showing each of the vortices separately near
/ ¼ 0:5 and / ¼ 3:3, respectively.

FIG. 9. For vortex locations / ¼ 0 and / ¼ 1 with opposite circulation, the global
centers at the high curvature limit appear at hp ¼ 2 and hp ¼ 5:2 as predicted by
Eq. (41).
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numerically solving Eq. (18) and using the solution to keep track of
spatiotemporal evolution of vortical defects via Eq. (19). One can build
some general intuition in specific situations, as explained in Fig. 10.
For example, as shown in top row of Fig. 10, in the low curvature

regime, 12 closely spaced vortices of the same circulation tend to rotate
together as a single effective center. Together with the creation of an
isolated center, the flow fields furnish a coarse grained version of
Poincare index theorem. This also follows from the fact that the

FIG. 10. Dynamics and flows for 12 vortices. The first two rows are at low curvature (large radius): with same (row 1) and alternating (row 2) circulation strengths. Crosses
(points) mark clockwise (counterclockwise) circulation. The last two rows are at high curvature (small radius): with same (row 3) and alternating (row 4) circulation strengths. In
all the rows, the vortices have the same initial locations centered in a small square. The left column shows the trajectories traced with time, and the middle and right columns
show the streamlines at initial and final time, respectively. Note how in the case of alternating circulations at the low curvature regime the dynamics span the entire spherical
domain, whereas for same circulation, vortices the dynamics stay bounded as resulting from the conservation of the second moment Eq. (42).
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symmetries of the Hamiltonian we constructed [Eq. (20)] preserve the
second moment,

M ¼
X
i6¼j

sisjC
2
ij; (42)

where Cij denotes the chord distance between the vortices. In this situ-
ation, since all circulations are the same, this implies that the vortices
will remain geometrically confined within a region of the membrane.

With alternating circulations (second row), this is no longer the
case, with the 12 centers breaking into smaller groups and spreading
across the whole membrane, while still conservingM. In the third and
fourth rows of Fig. 10, we consider the same initial conditions, but
with a high curvature. The high curvature leads to the creation of 2
global centers as expected, with vortices of the same circulation orbit-
ing around one of the global centers, while vortices with alternating
circulations get distributed among both the global centers. As expected
from the conservation laws, the dynamics remains confined in the case
of the same circulation vortices (third row) and unconfined for alter-
nating circulations (fourth row).

A. Pair creation and fusion

Typically, collapse of vortices happens under very special initial
conditions.19 As we have seen, unlike the situation on the plane, the
topology of the spherical membrane generically leads to the creation
of new vortical defects in the flow fields. This creates the possibility for
a spontaneous creation of vortical defect pairs as well as fusion events
on the spherical membrane. We observe that this is indeed the case.
The dynamics of vortices drives the system from one configuration of
defects to another, with a different number of defects (still satisfying
the Poincare index theorem before and after the bifurcation). We are

able to demonstrate these effects with a small number of vortices.
Figure 11 shows a temporal evolution, exhibiting spontaneous creation
and subsequent disappearance of a pair of vortical defects of opposite
index (vortex anti-vortex pair).

Within the biological context, one may also incorporate the finite
size of the rotating inclusions by introducing a soft repulsion between
vortices, in addition to hydrodynamic interactions that we have con-
sidered so far. This makes the dynamics and flow fields very interest-
ing, see Fig. 12 where we demonstrate a fusion event between an
original membrane rotor and a newly created defect arising from the
spherical topology. The fusion happens via a bridging saddle of nega-
tive index. We expect the number of such events to rapidly proliferate
in the situation of large number of inclusions. The many rotor system
will be explored in more detail in upcoming works.

V. MEMBRANES OF GENERAL CURVATURE
AND OTHER POSSIBLE EXTENSIONS

It is straightforward (although computationally intensive) to gen-
eralize the calculations presented here to arbitrary curved static geom-
etries. Let us denote the coordinates in 3D ambient space by xa and
arbitrary coordinates on the membrane by ya. A natural choice for the
section of the ambient frame bundle for arbitrary curved geometries
(embedded inR3) is the set n̂;~e1;~e2 where

n̂ ¼ r/
jr/j ; eaa ¼

@xa

@ya
; (43)

where the surface is described by the equation / ¼ 0, a runs over 1, 2
for coordinates on the hypersurface, while a runs over all three coordi-
nates on the ambient space. It is a simple matter to repeat the calcula-
tions with the normal vector n̂ now playing the role of the radial
vector in the boundary conditions. For a given embedding of the

FIG. 11. Left to right: an example of dynamical bifurcation for vortex strengths (1, 1, �1) where a defect pair is created spontaneously in the third figure and then disappears
as the dipole returns to its original position. Flow fields are shown in ðh;/Þ chart.

FIG. 12. Dynamical fusion with five rotors. Black arrows
mark the two centers which in the last frame combine into
one. Flow fields are shown in ðh;/Þ chart.
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surface, one first decomposes Lamb’s solution75 for the 3D fluid
(which we constructed in the spherical co-ordinate basis, see
Appendix A) in the above new basis constructed out of the hypersur-
face embedding. Then we apply the stick and stress boundary condi-
tions in this basis. The in-plane membrane velocity field can be
extracted by solving the spectral eigenfunctions wðy; sÞ and eigenval-
ues ks from the corresponding equations of membrane hydrodynamics
(see Appendix A for derivation) written in the basis~e1; ~e2 [defined in
Eq. (43)],

g2D 2KðyÞDawðy; sÞ þ DaDwðy; sÞð Þ ¼ ksD
awðy; sÞ; (44)

for an arbitrary local curvature K(y) and where D is associated with
the pullback metric on the hypersurface,

hab ¼ gabe
a
ae

b
b : (45)

For simple geometries, the spectrum is known and one can derive
analytic expressions for the stream functions. It will be interesting to
see, for example, how the anisotropies of an ellipsoid or of the negative
curvature of hyperbolic spaces affect the streamline topologies. We
also plan to investigate the dynamics and streamline topology of flow
fields in fluctuating biological membranes with bending rigidity and
surface tension, see, for example, Ref. 56 for an experimental perspec-
tive. One can also use the flows we constructed in this paper to study
the optimal time for navigation of microswimmers in spherical mem-
branes, see Ref. 4. We plan to report on these investigations in subse-
quent works.

VI. CONCLUSION

To summarize, in this work, we explored in detail the topological
aspects of 2D flows resulting from the dynamics of inclusions embed-
ded in curved biological membranes. To get a first estimate of such
flows, we considered a well-known model39,40 adapted to spherical
geometry in the presence of external solvents. In the examples of flows
due to point sources (point force, torque, and torque-dipole), we pre-
sented new closed form expressions for the respective Green’s function
in real space, using Appell hypergeometric functions. We investigated
the topological features of the flow fields in some detail. Such solutions
can be used to model hydrodynamic interactions of proteins embed-
ded in positively curved surfaces. The topology of the membrane cre-
ates many additional vortical defects. For the simpler situation of two
vortices, we were able to analytically predict the location of such
defects with good precision. The point rotor solutions allowed us to
construct a many-body geometric Hamiltonian that generates the
dynamics of the vortices on the spherical membrane. We studied the
spatiotemporal evolution of defect mediated 2D flows in the spherical
membrane. In particular, we found that at low curvature, the flows
generated by the rotating inclusions are similar to flows generated by
vortices in an ideal fluid. High curvature imparts a global rotation to
the many-body system, with the individual vortices interacting locally.
Already in this simple model at low Reynolds, we saw surprisingly rich
dynamics and flows mediated by the curvature and topology of the
spherical membrane. The spatiotemporal evolution of streamlines
revealed spontaneous creation and fusion of vortical defects, not pre-
sent in the planar versions of the model. Some of our key formulas in
this biological model are the dynamical equations Eqs. (18) and (19)
and the rotation rates Eqs. (25) and (36), which motivates experiments
along the lines of Refs. 6,7, and 9. This work also forms an essential

building block to analyze a wide class of active inclusions, colloids, and
microswimmers58–63 on curved surfaces.

From an experimental point of view (we thank the anonymous
Referee for suggesting us to highlight this point), one may achieve the
transition from the low to the high curvature regime in a more con-
trolled fashion by tuning the solvent viscosities g6, keeping the radius
R of the membrane fixed. Viewed this way, the high curvature regime
corresponds to reducing the external solvent viscosity such that
gþ � g�. With the advent of many advanced imaging techniques and
fluorescent rotor probes,3,5 it is now possible to perform accurate local
transport measurements in curved biological membranes. Moreover,
accurate particle tracking and velocity field imaging are also being con-
ducted in many artificial setups.55,56,72 Such investigations help us
understand and characterize the biophysical properties of membranes
and their impact on various cellular processes. Although such simple
models overlook many complex details of a living cell, they are essen-
tial to get a first estimate of biophysical transport processes that rou-
tinely take place in living cells.73,74 A good understanding of flows
happening in a membrane also has great potential to aid in efficient
drug delivery.4 We hope our results in this work will motivate more
studies and experiments in these exciting directions.
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APPENDIX A: MORE DETAILS ON THE POINT
FORCE

In this Appendix section, we briefly review the computation of
in-plane velocity-force response function, closely following.52,53 We
approximate the membrane as a two-dimensional viscous incom-
pressible fluid surrounded above and below by three-dimensional
viscous fluids, with same notations for parameters as in the main
text. Greek indices are used to denote in-plane 2D objects, while
Latin indices will be used for objects living in 3D ambient space.
The incompressibility and Stokes equations for the curved mem-
brane thus have the general form

Dava ¼ 0; DbPab ¼ 0; (A1)

where

Pab ¼ pgab � gablcD
lvc; (A2)

and

gablc ¼ g2D galgbc þ gacglbð Þ þ ðn� g2dÞgabglc; (A3)

where v denotes the in-plane 2D fluid velocity, D is the 2D covari-
ant derivative which generalizes the partial derivative of flat space, p
is the local pressure, and gl� is the 2D metric. g2D is the shear vis-
cosity of the 2D membrane fluid, while n is the bulk viscosity.

We now simplify the momentum equation of Eq. (A1) using
the incompressibility property Dava ¼ 0 and the metrinilic
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properties of the surface covariant derivative, i.e., Dagl� ¼ 0, so that
the metric gl� can freely pass in and out of the covariant derivative.
The surface metric gl� is also used to raise/lower appropriate
indices,

DbPab ¼ 0

) Db pgab � g2Dðgalgbc þ gacglbÞ þ ðn� g2DÞgabglc
� �

Dlvc
� �

¼ 0

) Dap� g2D DcDavc þ DlDlvað Þ þ ðn� g2DÞDa%ðDcvcÞ ¼0 0

) Dap� g2D DcDav
c|fflfflffl{zfflfflffl}þDlDlva

� �
¼ 0: (A4)

Let us consider the term shown in braces in the above equation. In
flat space, the derivatives Dc and Da are just partial derivatives, and
they may be interchanged (flat space derivatives commute). Then
using incompressibility @cvc ¼ 0, the term vanishes. However, they
no longer commute in curved surfaces, and the commutator is pro-
portional to the local Gaussian curvature K(x). Thus,

DcDav
c ¼ DcDavc ¼ Dc;Da½ �vc þ Da%Dcv

c ¼0 KðxÞ va: (A5)

Plugging this back to Eq. (A4), we get

Dap� g2D KðxÞ va þ DlD
lva

� �
¼ 0: (A6)

Abbreviating the curved Laplacian DlDl by D, we have the final
form of the Stokes equation written in terms of the Gaussian
curvature,

g2D KðxÞ þ Dð Þva ¼ Dap: (A7)

In the limit of zero curvature, one thus recovers the usual 2D Stokes
equations.

We now turn to the analysis of the spectrum of the operator
g2DðKðxÞ þ DÞ,

g2D KðxÞ þ Dð Þvað~x; sÞ ¼ ksvað~x; sÞ; (A8)

where we use s to label the eigenvalues ks and eigenfunctions
vað~x; sÞ. Any arbitrary velocity field on the curved surface can be
decomposed in terms of the eigenfunctions vað~x; sÞ as follows:

vaðxÞ ¼
X
s

Asvað~x; sÞ: (A9)

It helps to write the velocity eigenfunctions vað~x; sÞ in terms of a
stream function eigenmodes /ð~x; sÞ, satisfying the incompressibility
requirement Dava ¼ 0 as follows:

vað~x; sÞ ¼ �acD
c/ð~x; sÞ; (A10)

where � is proportional to the totally antisymmetric permutation
symbol e,

�ac ¼
ffiffiffi
g
p

eac; (A11)

and
ffiffiffi
g
p

denotes the determinant of the surface metric gl� .
Plugging Eq. (A10) into Eq. (A9), we get the total stream func-

tion /ð~xÞ, i.e.,
vaðxÞ ¼

X
s

As�acD
c/ð~x; sÞ :¼ �acD

c/ð~xÞ; (A12)

where the total stream function is given by a decomposition in the
eigenmodes

/ð~xÞ ¼
X
s

As/ð~x; sÞ: (A13)

We now rewrite the eigenvalue equation Eq. (A8) in terms of the
stream function /,

g2D 2KðxÞDc/ð~x; sÞ þ DcD/ð~x; sÞð Þ ¼ ksD
c/ð~x; sÞ: (A14)

For a general local Gaussian curvature, one can solve this equation
numerically; however, for surfaces of constant curvature, there is an
additional simplification,

D/ð~x; sÞ ¼ ks � 2Kg2D
g2D

/ð~x; sÞ: (A15)

We now turn to a discussion of the external solvents and boundary
conditions.

1. External fluids

We have ignored the role of external fluids in the fairly generic
treatment above. We now incorporate the effects of the external sol-
vent. The external fluids are described by the usual 3D Stokes equa-
tions. Let us denote the velocity, pressure, and viscosity for r>R by
þ and same quantities for r<R by –,

~r �~v6 ¼ 0; g6r2v6 ¼ ~rp6: (A16)

We have two boundary conditions:

(a) Stick boundary condition: velocities must coincide on the
membrane surface,

v6jr¼R ¼ v: (A17)

(b) Stress balance condition on the membrane

rext
a ¼ Dap� g2D KðxÞ þ Dð Þva þ Ta; (A18)

where rext
a is the external point force or point torque applied

to the membrane and Ta is the traction due to coupling of the
membrane fluid with the external solvents,

Ta ¼ r�ar � rþar jr¼R; r6
ij ¼ g6 Div

6
j þ Djv

6
i

� �
� gijp6: (A19)

Rewriting the stress balance equation Eq. (A18) in terms of
stream function using Eq. (A10) and eliminating the mem-
brane pressure by taking the antisymmetric derivative, one
arrives at

�abDbr
ext
a ¼ �

X
s

AsksD/s þ �abDbTa; (A20)

where the traction T is given by Eq. (A19). So far our discus-
sions are applicable to any curved static membrane geometry.
We now specialize to the spherical membrane.

2. Spherical membrane

The 2D sphere metric and Levi–Civita are listed as follows
along with their inverses:

gab ¼
R2 0

0 R2 sin2h

0
BB@

1
CCA; (A21)
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gab ¼

1
R2

0

0
1

R2 sin2h

0
BBBB@

1
CCCCA; (A22)

�ab ¼
0 R2 sin h

�R2 sin h 0

0
BB@

1
CCA; (A23)

�ab ¼
0

csc h
R2

� csc h
R2

0

0
BBBB@

1
CCCCA: (A24)

The spectrum of the Laplace Beltrami operator on a sphere is
known; Eq. (A15) immediately yields the eigenvalues ks in terms of the
constant curvature K and g2D. For the sphere of radius R, the eigenvalue
label s is given by the spherical harmonic mode index (l, m). Further,
K ¼ 1=R2, and the known spectrum for spherical Laplacian is given by

D/lm ¼ �
lðl þ 1Þ

R2
/lm: (A25)

Comparing Eqs. (A15) and (A25) gives

kl ¼
2� lðl þ 1Þ

R2
g2D; (A26)

and the eigenfunctions are given by

/lm ¼ Ylmðh;/Þ: (A27)

The mode decomposition for the velocity field on the sphere is
given by Eq. (A9) with the role of s played by (l, m),

va ¼
X
lm

Alm�acD
cYlm; (A28)

where we used Eq. (A27). The stress balance condition Eq. (A18) will
help us determine the unknown coefficients Alm in Eq. (A28) for the
membrane velocity on the sphere in terms of the applied force. For this,
we need to compute the traction Ta appearing in the stress balance con-
dition using the knowledge of the known Lamb’s solution75 for the
external solvent Eq. (A29). We carry out the steps as follows:

3. External solvent in spherical co-ordinate- Lamb’s
solution

Let us denote the velocities for r>R by vþ and for r<R by v�.
The solution of 3D Stokes equations75 is given by

~v� ¼
X1
l¼1

v�l ; v
�
l

¼ ~r 	 ð~rq�l Þ þ ~rw�l

þ 1
g�ðl þ 1Þð2l þ 3Þ

1
2
ðl þ 3Þr2~rp�l � l~rp�l


 �
; (A29)

where q�l ;w
�
l ; p

�
l are harmonic functions of ðr; h;/Þ, i.e.,

r2q�l ¼ 0;r2w�l ¼ 0;r2p�l ¼ 0, where

q�l ¼
Xm¼l
m¼�l

q�l;m rlYlmðh;/Þ;

w�l ¼
Xm¼l
m¼�l

w�l;m rlYlmðh;/Þ;

p�l ¼
Xm¼l
m¼�l

p�l;m rlYlmðh;/Þ:

(A30)

Similarly, for r>R, the solution is obtained by the replacement
l ! �l � 1. However, the stick boundary conditions demand

w�l ¼ 0; p�l ¼ 0; wþl ¼ 0; pþl ¼ 0; (A31)

and

q�lm ¼
Alm

Rlþ1 ; qþlm ¼ RlAlm: (A32)

Meanwhile, the traction can be computed using the definition,
Eq. (A19),

Ta ¼
X
lm

g�
R
ðl � 1Þ þ gþ

R
ðl þ 2Þ


 �
Alm�abD

bYlmðh;/Þ: (A33)

Finally, using the stress balance condition Eq. (A20) and decompos-
ing the point force localized at ðh0;/0Þ via

rext
a ¼

F0a

R2

X1
l¼0

Xl
m¼�l

Ylmðh;/ÞY
lmðh0;/0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

sin h0
dðh�h0Þdð/�/0Þ

; (A34)

we can solve for the unknown membrane velocity coefficients Alm

in terms of force components F0a ,

Alm¼
csch0

g2Dsllðlþ1Þ Fh0@/0
Y
lmðh0;/0Þ�F/0

@h0Y


lmðh0;/0Þ

� �
; (A35)

where sl ¼ lðl þ 1Þ � 2þ R
k�
ðl � 1Þ þ R

kþ
ðl þ 2Þ and k6 ¼ g2D

g6
. Let

us note that the traction contribution kills the zero mode l¼ 1.
Plugging Alm into the expression for the velocity field, we finally
arrive at the stream function corresponding to the velocity field on
the membrane surface for the point force,

w ¼
X
lm

AlmYlmðh;/Þ

¼
X
lm

csc h0
g2Dsllðl þ 1Þ Fh0@/0

Y
lm h0;/0½ �
�

� F/0
@h0Y



lm h0;/0½ �ÞYlmðh;/Þ; (A36)

where sl ¼ lðl þ 1Þ � 2þ R
k�
ðl � 1Þ þ R

kþ
ðl þ 2Þ and k6 ¼ g2D

g6
.

Performing the sum over m, this yields

w ¼ csc h0
4pg2D

Fh0@/0
S� F/0

@h0S
� �

; (A37)

where

S ¼
X
l

2l þ 1
sl lðl þ 1ÞPl cos c½ �; (A38)

where cos c ¼ cos/ððh0;/0Þ; ðh;/ÞÞ ¼ sin h sin h0 cos ð/� /0Þ
þcos h cos h0.
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The physical velocity field on the membrane surface is summarized by an Oseen tensor on S
2 given by vh ¼ GhhFh þ Gh/F/ v/

¼ G/hFh þ G//F/. They are the physical components of velocity and force as opposed to components in a covariant basis,

Ghh ¼
csc hcsc h0
4pg2D

@/@/0
S;

Gh/ ¼
csc h
4pg2D

@/@h0S;

G/h ¼
csc h0
4pg2D

@h@/0
S;

G// ¼
1

4pg2D
@h@h0S:

(A39)

We now perform the sum over Legendre polynomials to obtain a closed form expression for S, Eq. (A38). We proceed first by noting that the
roots of sl¼ 0 are given by

lp ¼
�ðg2d þ Rg� þ RgþÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22d þ 6Rg2dðg� � gþÞ þ R2ðg� þ gþÞ2

q
2g2d

;

lm ¼
�ðg2d þ Rg� þ RgþÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22d þ 6Rg2dðg� � gþÞ þ R2ðg� þ gþÞ2

q
2g2d

:

(A40)

We analyze the structure of the roots in detail in Appendix E. Here we just import those results. Depending on the parameters of the model,
lp lies in the range �2 < lp � 1. On the other hand, lm is always negative. Breaking S [Eq. (A38)] into partial fractions and summing the indi-
vidual parts, one gets two different real space representations of S depending on the sign of lp, as we show in Eqs. (A41) and (A44) below.

Further, in the situation when the internal and external Saffman lengths are same, i.e., k� ¼ kþ :¼ k, the analysis in Appendix E shows that
for large radius R� k, the root lp is negative. In the opposite situation of high curvature (small radius), i.e., R� k, the root lp is positive. Thus, one
has different representations of S depending on the sign of the root lp. We use the appropriate one for our simulations. We list them as follows:

Case 1: �2 < lp < 0 (low curvature regime)

Slp<0 ¼
1
lmlp

log 2½ � � log �cos cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c

p
þ 1

� �� �
þ 1
ð1þ lmÞð1þ lpÞ

log
cos c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c
p

� 1
cos c� 1

� 

þ 1þ 2lm
lmð1þ lmÞðlm � lpÞ

A lm½ � þ
1þ 2lp

lpð1þ lpÞðlp � lmÞ
A lp
� 	

; (A41)

where the function A½lm� is defined by a combination of Appell hypergeometric function,

A lm½ � ¼
ð�1þ lmÞlmA 2� lm;

1
2
;
1
2
;3� lm; e

ic; e�ic
� 

�ð�2þ lmÞ ð�1þ lmÞA �lm;�
1
2
;�1

2
;1� lm; e

ic; e�ic
� 

þ 2lmA 1� lm;
1
2
;
1
2
;2� lm; e

ic; e�ic
� 

cos c


 �
ð�2þ lmÞð�1þ lmÞlm

;

(A42)

and a similar relation for A½lp�.
The function A becomes simpler for integer values of the negative root. We list some of them as follows:

Ajlm¼0 ¼ log 2� log �x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ 1
� 	

jx¼cos c;

Ajlm¼�1 ¼ log
x �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

� 1
x � 1

� ����
x¼cos c

;

Ajlm¼�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ 2xcoth�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ 1
� �

jx¼cos c:

(A43)

Case 2: 0 < lp < 1 (ligh curvature regime)
In this situation,

Slp>0 ¼
1
lmlp

log 2½ � � log �cos cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c

p
þ 1

� �� �
þ 1
ð1þ lmÞð1þ lpÞ

log
cos c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c
p

� 1
cos c� 1

� 

þ 1þ 2lm
lmð1þ lmÞðlm � lpÞ

A lm½ � þ
1þ 2lp

lpð1þ lpÞðlp � lmÞ
B lp
� 	

; (A44)

where

B lp
� 	
¼ � 1

lp
þ
1�A �lp;

1
2
;
1
2
; 1� lp; e

ic; e�ic
� 

lp
: (A45)
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There are some special points in the parameter space where the
above representations need to be supplemented by the following:

Case 3: One of the roots is zero
This enforces the other root; let us call it ~l ¼ g�þ4gþ

g��2gþ
and

g2d ¼ R
2 ð2gþ � g�Þ. Note that for g2d > 0 we need 2gþ > g�,

which implies~l has to be negative,

S ¼
X
l

2l þ 1

ðl �~lÞl2ðl þ 1Þ
Pl cos c½ �

¼�1�
~l

~l
2 log 2½ � � log �cos cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c

p
þ 1

� �� �

� 1
~l
S0 þ

1

1þ~l
A �1½ � þ 1þ 2~l

~l
2ð1þ~lÞ

A ~l½ �; (A46)

where

S0 ¼
X1
l¼1

Pl cos c½ �
l2

(A47)

is convergent and can be evaluated numerically.
Case 4: One of the roots is �1
This enforces the other root, let us call it ~l ¼ 2ðg�þgþÞ

2g��gþ
and

g2d ¼ R
2 ðgþ � 2g�Þ. Note that for g2d > 0 we need gþ > 2g�,

which implies~l has to be negative,

S ¼
X
l

2l þ 1

ðl � lpÞlðl þ 1Þ2
Pl cos c½ �

¼ �1
~l

log 2½ � � log �cos cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c

p
þ 1

� �� �
þ 1

�~l � 1
~S0 þ

~l

ð~l þ 1Þ2
A �1½ � þ 1þ 2~l

~lð1þ~lÞ2
A ~l½ �; (A48)

where

~S0 ¼
X1
l¼1

Pl cos c½ �
ðl þ 1Þ2

; (A49)

is convergent and can be evaluated numerically.

APPENDIX B: MORE DETAILS ON THE POINT
TORQUE

Keeping the same notations as the force-velocity response cal-
culation, the equation for stress balance Eq. (A20) in the situation
of a rotor embedded in the spherical membrane takes the following
form in the basis of spherical harmonics:

��acDc s �abD
b

h i����
h0;/0

1
R2

X
l;m

Ylmðh;/ÞY
lmðh0;/0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

sin hdðh�h0Þdð/�/0Þ

0
BB@

1
CCA

¼
X
lm

g2Dlðl þ 1Þ
R4

sl|{z}
membrane stressþtraction

AlmYlmðh;/Þ;

sl ¼ lðl þ 1Þ � 2þ R
l�
ðl � 1Þ þ R

lþ
ðl þ 2Þ; (B1)

where the in-plane membrane velocity field is decomposed as Eq. (A28),
i.e., va ¼

P
lm Alm�acDcYlm and tau denotes the rotor circulation.

Solving for the unknown coefficients Alm from the above equation yields

Alm ¼
sY
lmðh0;/0Þ

g2D sl
: (B2)

Plugging this into the mode expansion for the velocity field Eq.
(A28), we get

va ¼
X
lm

sY
lmðh0;/0Þ
g2D sl

�acD
cjh;/Ylmðh;/Þ: (B3)

Performing the sum over m,
Pm¼l

m¼�l Ylmðh1;/1ÞY
lmðh2;/2Þ
¼ 2lþ1

4p Plðcos cÞ, we finally have

va ¼
X
l

sð2l þ 1Þ
4pg2D sl

�acD
cjh;/Plðcos cÞ; (B4)

where c is the geodesic angle between ðh;/Þ and ðh0;/0Þ.
Introducing the operator ½rS2

? � ¼ �ðĥ 1
R sin h @/ � /̂ 1

R @hÞ, we
find that the physical velocity field can be expressed as

v ¼ s
g2D

rS2

?

h i
w; (B5)

where the dimensionless stream function w is given by

w h;/; h0;/0½ � ¼
X
l

ð2l þ 1Þ
4p sl

Plðcos cÞ; (B6)

where sl ¼ lðl þ 1Þ � 2þ R
l�
ðl � 1Þ þ R

lþ
ðl þ 2Þ and k6 ¼ g2D

g6
and

cos c ¼ sin h sin h0 cos ð/� /0Þ þ cos h cos h0.

1. Vanishing of membrane pressure in rotors

Taking the symmetric derivative Da of the stress balance con-
dition rext

a ¼ Dap�
P

lm Almkl�acDc/lm þ Ta, we get

Dp ¼ 0 (B7)

for the case of a rotor, i.e., rext
a ¼ s�abDbdðh� h0;/� /0Þ and

traction Ta given by Eq. (A33). Since D is a Laplace operator on a
compact manifold S2 (see Ref. 76 for details), p can only be a har-
monic function with eigenvalue zero which forces it to be a constant
and drops out of the hydrodynamic equation because it appears as
a gradient. Let us note that this does not happen for the external
point force where we will get a non-zero membrane pressure.

2. Flat membrane limit

The planar limit of Eq. (B6) can be understood by introducing
a momentum variable q ¼ l

R and converting the sum into an inte-
gral in the limit of large radius,

w h;/; h0;/0½ � ¼
Xlmax

l¼1

1
R|{z}

dq¼d2q
2pq

ð2l þ 1ÞR
4p sl|fflfflfflfflffl{zfflfflfflfflffl}

1
2pðqþk�1Þ

Plðcos cÞ|fflfflfflffl{zfflfflfflffl}
eiq:r

!
ð

d2q

qðqþ k�1Þ
eiq:r ; (B8)
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where we used

ð2l þ 1ÞR
4p sl

¼ ð2qRþ 1ÞR

4p qRðqRþ 1Þ � 2þ R
k�
ðqR� 1Þ þ R

kþ
ðqRþ 2Þ


 �

� 2qR2

4p q2R2 þ R
k�
ðqRÞ þ R

kþ
ðqRÞ


 �
� 1

qþ 1
k�
þ 1

kþ


 � : (B9)

3. Performing the sum over Legendre polynomials

In order to find the closed form expression for w given by Eq.
(B6), we proceed exactly as the situation of the point force.
Depending on the nature of the roots of the equation sl¼ 0, we
again have different representations of w. We list them as follows
(Fig. 13):

Case 1: �2 < lp < 0 (low curvature regime)

wlp<0 ¼
1
4p

2lm þ 1
lm � lp

A lm½ � �
2lp þ 1

lm � lp
A lp
� 	 !

; (B10)

with A given by Eq. (A42).
Case 2: 0 < lp < 1 (high curvature regime)

wlp>0 ¼
1
4p

2lm þ 1
lm � lp

A lm½ � �
2lp þ 1

lm � lp
B lp
� 	 !

; (B11)

with A and B given by Eqs. (A42) and (A45).
Case 3: lp¼ 0
In this situation,

wlp¼0 ¼
X
l

2l þ 1
lðl � lmÞ

Pl cos c½ �

¼ � 1
lm

log
2

�cos cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c
p

þ 1

� 

þ 1þ 2lm
lm

A lm½ � þ
1
lm


 �
; (B12)

where A is defined in Eq. (A42).

APPENDIX C: MORE DETAILS ON THE COUNTER
ROTATING TORQUE

We now consider the situation of counter rotating torque
dipole, one situated at r¼R with torque s and the other positioned
at r ¼ Rþ d with torque �s. This is a useful first approximation of
rotor proteins in a membrane.51 Following Lamb’s solution75 in
spherical co-ordinates, we first consider the solutions of the Stokes
equations in 3D, as given in Eq. (A29) with Eq. (A31). (In our nota-
tion, the physical components of the 3D velocity field are given by
~v ¼ vr r̂ þ vhĥ þ v//̂ and similarly for the membrane ~v ¼ vhĥ
þv//̂.) We list the profiles in the appropriate domains (v�; vint ; vþ

denote the innermost, intermediate, and outermost velocity fields,
respectively).

For r<R, we have

v½ ��r ¼ 0;

v½ ��h ¼
X
lm

1
sin h

q�lmr
l@/Ylmðh;/Þ;

v½ ��/¼ �
X
lm

q�lmr
l@hYlmðh;/Þ;

(C1)

and for r > Rþ d, we have

v½ �þr ¼ 0;

v½ �þh ¼
X
lm

1
sin h

qþlmr
�l�1@/Ylmðh;/Þ;

v½ �þ/¼ �
X
lm

qþlmr
�l�1@hYlmðh;/Þ:

(C2)

For R < r < Rþ d, we have both the rising and falling solutions in
the intermediate velocity field vint,

vint½ ��r ¼ 0;

vint½ ��h ¼
X
lm

1
sinh

~q�lmr
l@/Ylmðh;/Þ þ

1
sinh

~qþlmr
�l�1@/Ylmðh;/Þ


 �
;

vint½ ��/¼�
X
lm

~q�lmr
l@hYlmðh;/Þ þ

X
lm

~qþlmr
�l�1@hYlmðh;/Þ


 �
:

(C3)

The physical components of the membrane velocity field are as
follows:

vh ¼¼
1

R sin h

X
lm

Alm@/Ylmðh;/Þ;

v/ ¼ �
1
R

X
lm

Alm@hYlmðh;/Þ:
(C4)

FIG. 13. Comparison of the velocity component v/ vs h [using our analytic expres-
sion Eq. (B11)] with the contribution to velocity purely from global rotation term [Eq.
(15) of main text] shown in gray, for the point torque positioned at the north pole.
Top left to bottom right, the curvature is progressively increased. The non-
monotonicity (which appears first on the second plot from the left) is due to the
dominance of the global rotation term as curvature is increased.
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Thus, altogether we have five undetermined coefficients Alm; q�lm; q
þ
lm; ~q

þ
lm; ~q

�
lm which are to be determined via five equations: three equations

from velocity matching and two stress balance equations at r¼R and r ¼ Rþ d. Velocity matching at r¼R gives two equations since the
membrane velocity field has to match with vint and v� simultaneously at r¼R. This gives

Alm

R
¼ q�lmR

l ¼ ~q�lmR
l þ ~qþlmR

�l�1: (C5)

Further vint has to match with vþ at r ¼ Rþ d. This gives us

~q�lmðRþ dÞl þ ~qþlm
1

ðRþ dÞlþ1
¼ qþlm
ðRþ dÞlþ1

: (C6)

Traction at r ¼ Rþ d:

~T a ¼ gþ
X
lm

~q�lmðRþ dÞlðl � 1Þ þ ð~qþlm � qþlmÞðRþ dÞ�l�1ð�l � 2Þ
� 

�abD
bYlm: (C7)

Stress balance at r ¼ Rþ d: The equation for stress balance in this surface [plugged ~T from Eq. (C7)] gives

s

ðRþ dÞ2
Y
lmðh0;/0Þ ¼gþ ~q�lmðRþ dÞlðl� 1Þ þ ð~qþlm � qþlmÞðRþ dÞ�l�1ð�l � 2Þ

� �
: (C8)

Traction at r¼R:

Ta ¼ g�q
�
lmðl � 1ÞRl � gþ~q�lmðl � 1ÞRl � gþ~qþlmð�l � 2ÞR�l�1

h i
�abD

bYlm: (C9)

The stress balance at r¼R now becomes

� s
R2

Y
lmðh0;/0Þ ¼ �
Almð2� lðl þ 1ÞÞ

R2
g2D þ g�q

�
lmðl � 1ÞRl � gþ~q�lmðl � 1ÞRl

�
� gþ~qþlmð�l � 2ÞR�l�1Þ: (C10)

Thus, the complete set of equations one needs to solve is given by

Alm

R
¼ q�lmR

l ¼ ~q�lmR
l þ ~qþlmR

�l�1;

~q�lmðRþ dÞl þ ~qþlm
1

ðRþ dÞlþ1
¼ qþlm
ðRþ dÞlþ1

;

s

ðRþ dÞ2
Y
lmðh0;/0Þ ¼ gþ ~q�lmðRþ dÞlðl � 1Þ þ ð~qþlm � qþlmÞðRþ dÞ�l�1ð�l � 2Þ

� �
;

� s
R2

Y
lmðh0;/0Þ ¼ �
Almð2� lðl þ 1ÞÞ

R2
g2D þ g�q

�
lmðl � 1ÞRl � gþ~q�lmðl � 1ÞRl � gþ~qþlmð�l � 2ÞR�l�1

� �
:

(C11)

The solution is given by

Alm ¼ s
ðRþ dÞ�2�l R2þl � d2ðd þ RÞl � 2dRðd þ RÞl � R2ðd þ RÞl

� �
ð�2þ l þ l2Þ g2D þ R g�ðl � 1Þ þ gþðl þ 2Þ

� 	 Y
lmðh0;/0Þ

¼ s
g2D

ðRþ dÞ�2�l R2þl � d2ðd þ RÞl � 2dRðd þ RÞl � R2ðd þ RÞl
� �

sl
Y
lmðh0;/0Þ;

(C12)

q�lm ¼
s

g2D

R�l�1ðd þ RÞ � 2� lðR2þl � d2ðd þ RÞl � 2dRðd þ RÞl � R2ðd þ RÞlÞY
lmðh0;/0Þ
sl

;

qþlm ¼
s

g2D

ðd þ RÞ�2�l ð1� lÞR1þ2lðð2þ lÞg2d þ Rðg� � gþÞÞ � ð1þ 2lÞRlðd þ RÞ2þlgp þ ðd þ RÞ1þ2lðð�1þ lÞðð2þ lÞg2d þ Rg�Þ þ ð2þ lÞRgþÞ
� �

ð1þ 2lÞgþsl
	Y
lmðh0;/0Þ;

~qþlm ¼
s

g2d

Rlðð1� lÞR1þlðd þ RÞ�2�lðð2þ lÞg2d þ Rðg� � gþÞÞ � ð1þ 2lÞgþ
ð1þ 2lÞgþsl

Y
lmðh0;/0Þ;

~q�lm ¼
ðd þ RÞ�2�lsY
lmðh0;/0Þ

ð2l þ 1Þgþ
;

(C13)
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va¼
X
lm

Alm�acD
cYlm

¼
X
lm

s
g2D

ðRþdÞ�2�l R2þl�d2ðdþRÞl�2dRðdþRÞl�R2ðdþRÞl
� �

sl

	Y
lmðh0;/0Þ�acD
cYlmðh;/Þ: (C14)

Performing the sum over m, we get

va ¼
X
l

s
g2D

Cl

sl

2l þ 1
4p

�acD
cPlðcos cÞ; (C15)

where

Cl :¼ ðRþ dÞ�2�l R2þl� d2ðdþRÞl� 2dRðdþRÞl�R2ðdþRÞl
� �

¼ dð�2� lÞ
R

þOðd2Þ: (C16)

Introducing the operator ½rS2

? � ¼ �ðĥ 1
R sin h @/ � /̂ 1

R @hÞ, we find
that the physical velocity field can be expressed as

v ¼ s
g2D

rS
2

?

h i
w; (C17)

where the dimensionless stream function w is given by

w h;/; h0;/0½ � ¼
X
l

ð2l þ 1ÞCl

4p sl
Plðcos cÞ; (C18)

where sl ¼ lðl þ 1Þ � 2þ R
l�
ðl � 1Þ þ R

lþ
ðl þ 2Þ and l6 ¼ g2D

g6
and

cos c ¼ sin h sin h0 cos ð/� /0Þ þ cos h cos h0 and Cl is defined in
Eq. (C16). Let us also note from Eq. (C16) that the velocity field
vanishes when the distance d between the counter rotating torques
go to zero.

1. Flat membrane limit

The planar limit of Eq. (C18) can be understood by again
introducing a momentum variable q ¼ l

R and converting the sum
into an integral in the limit of large radius,

w h;/; h0;/0½ � ¼
Xlmax

l¼1

1
R|{z}

dq¼d2q
2pq

ð2l þ 1ÞClR
4p sl|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

qd

2pðqþk�1ÞþOðd
2Þ

Plðcos cÞ|fflfflfflffl{zfflfflfflffl}
eiq:r

! d 	
ð

d2q

ðqþ k�1Þ
eiq:r ; (C19)

where we used

ð2l þ 1ÞClR
4p sl

¼
ð2qRþ 1Þ d

R
ð�2� qRÞR

4p qRðqRþ 1Þ � 2þ R
k�
ðqR� 1Þ þ R

kþ
ðqRþ 2Þ


 �

� 2dq2R2

4p q2R2 þ R
k�
ðqRÞ þ R

kþ
ðqRÞ


 �
� q

qþ 1
k�
þ 1

kþ


 � : (C20)

Thus the velocity has dimensions sd
g2D
	 1

k.

We need to perform the sum (to lowest order in d). Once
again, the roots of the equation sl¼ 0 are given by Eq. (A40).

Case 1: �2 < lp < 0 (low curvature)

wlp<0 ¼�
d

4pR
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cos c
p þ 2þ 5lm þ 2l2m

lm � lp
A lm½ �

"

þ
�2� 5lp � 2l2p

lm � lp
A lp
� 	#

; (C21)

where A is defined by Eq. (A42).
Case 2: If 0 < lp < 1 (high curvature)

wlp>0 ¼�
d

4pR
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� 2 cos c
p þ 2þ 5lm þ 2l2m

lm � lp
A lm½ �

"

þ
�2� 5lp � 2l2p

lm � lp
B lp
� 	#

; (C22)

where A and B are defined by Eqs. (A42) and (A45).
Case 3: lp¼ 0
In this situation,

wlp¼0 ¼
X
l

ð2l þ 1Þð�l � 2Þ
lðl � lmÞ

Pl cos c½ �

¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c
p þ 2

lm
log

2
�cos cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c
p

þ 1

� 

þ�2� 5lm � 2l2m
lm

A lm½ � þ
1
lm


 �
; (C23)

where A is defined in Eq. (A42).

APPENDIX D: ANALYTICAL INVESTIGATIONS OF
STREAMLINE TOPOLOGIES

In this section, we provide details of the derivation of Eq.
(32) of main text. We initially consider N rotors and later special-
ize to two rotors. One can project the dynamical equations Eq.
(18) of main text via stereographic projection on the plane. If we
denote the plane polar co-ordinates by (r, ~h), then the stereo-
graphic map relates (r, ~h) to coordinates (h;/) on the sphere via
the relations

~h ¼ /;

r ¼ tan
h
2
:

(D1)

Using this mapping, the hydrodynamic evolution equations take
the form

d
dt

r2i ¼
1

g2DR2

XN
j 6¼i

sjð1þ r2i Þ
2

2
@~h i

w cij½ �;

d
dt

~hi ¼
1

g2DR2

XN
j 6¼i

�sjð1þ r2i Þ
2

2
@r2i w cij½ �;

(D2)

where
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cij ¼ arccos
ð1� r2i Þð1� r2j Þ þ 4rirj cos ð~hi � ~hjÞ

ð1þ r2i Þð1þ r2j Þ

 !
: (D3)

Similarly, the equation of a tracer particle (denoted by suffix p)
moving in the presence of N rotors can be written in terms of Hp as
follows:

d
dt

r2p ¼
1

g2DR2

ð1þ r2pÞ
2

2
@~hp

Hp;

d
dt

~hp ¼
1

g2DR2

�ð1þ r2pÞ
2

2
@r2pHp;

(D4)

Hp ¼
XN
j

sj w cpj½ �; (D5)

and

cpj ¼ arccos
ð1� r2pÞð1� r2j Þ þ 4rprj cos ð~hp � ~hjÞ

ð1þ r2pÞð1þ r2j Þ

 !
: (D6)

Introducing complex coordinates on the plane z ¼ rei
~h we can write

Eq. (D4) in complex notation

d
dt

z
p ¼
i

g2DR2

ð1þ jzpj2Þ2

2
@zpHp; (D7)

where Hp is the same as defined in Eq. (D5)81 with the geodesic dis-
tance in complex notation given by

cpj ¼ arccos
ð1� jzpj2Þð1� jzjj2Þ þ 4Re zp�zj½ �

ð1þ jzpj2Þð1þ jzjj2Þ

 !
: (D8)

In this section, we perform an analytical treatment of the location
of stagnation points on the spherical membrane in the regimes of
low and high curvature separately.

1. Regime of low curvature

In general, it follows from Eq. (D7) that solving for stagnation
points amounts to solving for solutions to

d
dt

�zp ¼
i

g2DR2

ð1þ jzpj2Þ2

2
@zp

XN
j

sj w cpj½ �

0
@

1
A ¼ 0; (D9)

with the geodesic distance in complex notation given by

cpj ¼ arccos
ð1� jzpj2Þð1� jzjj2Þ þ 4Re zp�zj½ �

ð1þ jzpj2Þð1þ jzjj2Þ

 !
; (D10)

and the stream function w given by Eq. (B6). Because the stream
function is complicated in structure after performing the Legendre
sum, we propose here to choose a set of parameters that enables us
to simplify the stream function and subsequent analysis of stagna-
tion points.

To be concrete, let us choose g2D ¼ 3=2; g� ¼ 1; gþ ¼ 2;R
¼ 1 for which k=R ¼ 1=2. This yields the two roots of sl¼ 0 to be
lm ¼ �3; lp ¼ 0

Using case 3 of summed up versions of Eq. (B6), we get

w c½ � ¼
1

12p
5
2
ð6 cos 2c� 2ÞarcCoth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c

p
þ 1

� �h�

�log �cos cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos c

p
þ 1

� �
: (D11)

Plugging Eq. (D11) into Eq. (D9),

i
g2DR2

ð1þ jzpj2Þ2

2

XN
j

sj F zp; zj½ �G zp; zj½ �

0
@

1
A ¼ 0; (D12)

where the factors F and G arise from the derivative of the stream
function, i.e., @zpw ¼ @w

@ cos c @zp cos c :¼ F 	 G. Let us note that
although F is dependent on the choice of parameters, the factor G is
essentially purely geometric. For our choice of parameters,

F zp;zj½ �¼
10�8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2coscpj

p þcoscpj �1þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2coscpj

p þ15 �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2coscpj

p� �
coscpj�30coscpj sin

2cpjarcCoth 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2coscpj

p� �� �
�12psin2cpj

;

G zp;zj½ �¼
ð1�jzjj2Þð�2�zpÞþ4 ð1þjzpj2Þ

�zj
2
�Re zp�zj½ ��zp


 �
ð1þjzjj2Þð1þjzpj2Þ2

; (D13)

where in the expression of F we have

cos cpj ¼
ð1� jzpj2Þð1� jzjj2Þ þ 4Re zp�zj½ �

ð1þ jzpj2Þð1þ jzjj2Þ

 !
: (D14)

We now specialize to the case of two rotors on the spherical mem-
brane. Let their positions in the complex plane be denoted by z1

and z2. Since the stagnation points are always constrained to lie on
the great circle joining the two locations, we can essentially map the
dynamics to the unit circle on the complex plane. We choose coor-
dinates such that the location of first rotor is at ~h1 ¼ 0 and the sec-
ond rotor at ~h1 ¼ /. We further choose, without loss of generality,
the strength of the first rotor to be 1 and relative strength between
the rotors be denoted by s. Thus,
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z1 ¼ 1; z2 ¼ ei/; s1 ¼ 1; s2 ¼ s: (D15)

Plugging Eq. (D15) into Eqs. (D12) and (D13), we convert it to an effective two parameter problem where the stagnation point zp has to be solved
as a function of the relative vortex strength s and the location of the second vortex parametrized by / from the equation

F zp; 1½ �G zp; 1½ � þ s2 F½zp; ei/�G½zp; ei/� ¼ 0

) f ReðzpÞ
� 	 1

4
ð1� �z2pÞ þ sf Reðzpe�i/Þ

h i 1
2

e�i/ � Reðzpe�i/Þ�zp
� �

¼ 0; (D16)

where

f ¼
10� 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ x �1þ 5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p

þ 15 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p� �

x þ 30x ðx2 � 1ÞarcCoth 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2x
p� �� �

12pðx2 � 1Þ : (D17)

Substituting ansatz zp ¼ eihp into Eq. (D18), we get

f cos hp
� 	 1

4
ð1� e�2ihpÞ þ sf cos ðhp � /Þ

� 	
	 1
2

e�i/ � cos ðhp � /Þe�ihp
� �

¼ 0: (D18)

2. Regime of high curvature

In the regime of high curvature, ignoring all local corrections,

F ¼ dw
dðcos cÞ ¼ �

g2D
4pRgþ

: (D19)

This follows directly from the fact that the global rotation term is:

d
dc

w ¼ g2D
4pRgþ

sin c: (D20)

Using this F, the equation for stagnation points simplifies
considerably,

Gðzp; 1Þ þ sGðzp; ei/Þ � 0

) 1
4
ð1� �z2pÞ þ

s
2

e�i/ � Re zpe
�i/

h i
�zp

� �
¼ 0:

(D21)

Substituting zp ¼ eihp in the above equation, we get

1
4
ð1� e�2ihÞ þ s

2
e�i/ � cos ðh� /Þe�ih
� �

¼ 0: (D22)

This is the equation discussed in the main text, Eq. (40).

APPENDIX E: ROOTS OF SL: POLES OF THE STREAM
FUNCTION IN LEGENDRE BASIS ON THE SPHERE

In all the examples we studied in the main text, the dimension-
less stream function on the spherical membrane has the following
generic structure in the basis of Legendre polynomials:

w h;/; h0;/0½ � ¼
X
l

fl
4p sl gl

Plðcos cÞ; (E1)

where fl and gl are some polynomials in Legendre modes denoted
by l and sl ¼ lðl þ 1Þ � 2þ R

k�
ðl � 1Þ þ R

kþ
ðl þ 2Þ. The geodesic

angle between the source and response locations is denoted by c. In

order to find the real space Green’s function, one is thus left with
the task of performing the sum, Eq. (E1). As mentioned in
Appendixes A–C, the real space representation of the stream func-
tion crucially depends on the root structure of the equation sl¼ 0.

In this Appendix, we discuss the nature of the roots of the
equation sl¼ 0,

sl ¼ lðl þ 1Þ � 2þ R
g�
g2D
ðl � 1Þ þ Rgþ

g2D
ðl þ 2Þ ¼ 0

) l2 þ l 1þ Rg�
g2d
þ Rgþ

g2d


 �
þ �2� Rg�

g2d
þ 2Rgþ

g2d


 �
¼ 0;

(E2)

lp¼
�ðg2dþRg�þRgþÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22dþ6Rg2dðg��gþÞþR2ðg�þgþÞ2

q
2g2d

;

lm¼
�ðg2dþRg�þRgþÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9g22dþ6Rg2dðg��gþÞþR2ðg�þgþÞ2

q
2g2d

:

(E3)

Let us now discuss the nature of the roots in the space of parameters
as follows:

Nature of the root lm: always negative.
Nature of the root lp: The range of this root is �2 < lp � 1.

Thus, this root changes sign as parameters are varied. As we saw in
Appendixes A–C, the stream function has two different representa-
tions in real space depending on the sign of lp.

In order to understand this better, let us first consider the sim-
pler situation gþ ¼ g� :¼ g3d . Defining the unique Saffman length
as k :¼ g2d

2g3d
, we first note from Eq. (E2) that the product of the two

roots is

lmlp ¼
R
2k
� 2: (E4)

Since lm is always negative, it is clear that for large radius R > 4k,
the root lp is negative. In the opposite situation of high curvature
(small radius), i.e., R < 4k, the root lp is positive.

To explore the more generic situation where gþ 6¼ g�, let us
consider expansions of lp in terms of radius R.

For small radius,

lp ¼ 1� Rgþ
g2d
þOðR2Þ: (E5)
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Thus, it shows that lp < 1 for small radius (high curvature) and
attains the limiting value one in the limit of vanishing external sol-
vent or radius.

Let us also identify the regime where lp < 0. This demands

lp < 0; lmlp ¼ �2� Rg�
g2d
þ 2Rgþ

g2d


 �
> 0; (E6)

which is satisfied when

2gþ � g� > 0; g2d <
R
2
ð2gþ � g�Þ: (E7)

For large radius,

lp ¼ �
2gþ � g�
gþ þ g�

þ Oð1=RÞ: (E8)

One notes that now the sign of lp is more subtle, positive if
g� > 2gþ and negative for g� < 2gþ.
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can equally well wrap the flow field on the spherical membrane.

81Let us note that upon substituting the stream function for ideal vortices given
by w½cpj� ¼ log ð1� cos cpjÞ, one gets the standard Hamiltonian for ideal vorti-
ces on the sphere given by

Hideal
p ¼

XN
j

sj log
jzp � zjj2

ð1þ jzpj2Þð1þ jzjj2Þ
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