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Abstract Thin elastic sheets supported on compliant media form wrinkles under lateral compression. Since
the lateral pressure is coupled to the sheet’s deformation, varying it periodically in time creates a parametric
excitation. We study the resulting parametric resonance of wrinkling modes in sheets supported on semi-
infinite elastic or viscoelastic media, at pressures smaller than the critical pressure of static wrinkling. We
find distinctive behaviors as a function of excitation amplitude and frequency, including (a) a different
dependence of the dynamic wrinkle wavelength on sheet thickness compared to the static wavelength; and
(b) a discontinuous decrease in the dominant wrinkle wavelength upon increasing excitation frequency at
sufficiently large pressures. In the case of a viscoelastic substrate, resonant wrinkling requires crossing a
threshold of excitation amplitude. The frequencies for observing these phenomena in relevant experimental
systems are of the order of a kilohertz and above. We discuss experimental implications of the results.

1 Introduction

Wrinkling is one of the common deformation patterns
which thin elastic sheets form when subjected to lateral
compression [1–3]. In many cases, wrinkles appear when
the sheet is supported on a softer substrate, a scenario
which is relevant to a range of applications (e.g., coat-
ings, paints) and naturally occurring structures (e.g.,
skin and tissue linings). Studies have been directed
more recently at active wrinkling [4–8]. The interplay
between the topography of supported thin sheets and
their delamination off the support [9–13] suggests active
wrinkling as an anti-fouling strategy adopted by Nature
and mimicked in man-made systems [5,6,8,14]. These
studies of active wrinkling have considered static or
quasi-static wrinkles, arising from mechanical equilib-
rium at pressures exceeding the static flat-to-wrinkle
transition. The dynamic effects considered in those
studies [5,8] are due to low-frequency (below 1 Hz)
actuations, where the wrinkles follow the external stim-
ulus quasi-statically.

Works going beyond the quasi-static limit addressed
the time evolution of the flat-to-wrinkle transition in
sheets supported on viscous [15,16] and viscoelastic
[17] media. Dynamic wrinkles have been studied in two
additional scenarios. The first is the formation of radial
wrinkles in thin sheets upon impact of a rigid object
[18–21]. In another scenario, a slender body in contact
with a liquid is compressed by a progressively increasing
lateral pressure [22–24]. Unlike static wrinkles, whose
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wavelength is determined by a competition between two
restoring forces (e.g., bending of the sheet and deforma-
tion of the substrate), those short-time dynamic wrin-
kles arise from an interplay of a restoring force and
inertia or viscous stresses in the substrate, resulting in
a wavelength that increases with time. Finally, dynamic
control of wrinkle wavelength and pattern was demon-
strated in supported sheets under changing tempera-
ture and solvent diffusion [25].

The present work investigates a different phenomenon,
where periodic forcing and inertia take a supported
sheet out of plane through a mechanism of paramet-
ric resonance [26]. Parametric resonance suggests itself
naturally for compressed sheets, because the actuating
pressure produces a force that depends on the sheet’s
out-of-plane deformation.

The investigated dynamics involves a combination of
five factors: the sheet’s bending elasticity and inertia,
and the substrate’s elasticity, viscosity, and inertia. Sec-
tion 2 is devoted, therefore, to heuristic consideration of
the relevant scales and dominant mechanisms. In addi-
tion, to reduce the complexity of the analysis, we will
employ along the way several simplifying assumptions
while trying not to compromise the qualitative phys-
ical significance of the results. In Sect. 3, we present
the model and the general equations of motion which
are common to the more specific cases that follow. Sec-
tion 4 presents results for a sheet supported on two
types of substrate — an elastic substrate (Sect. 4.1) and
a viscoelastic one (Sect. 4.2). We give in the main text
the key steps of the derivations and their results. The
detailed calculations are found in the Supplementary
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Material [27]. In Sect. 5, we summarize the predictions
for experiments, compare the resonant wrinkling with
other dynamic-wrinkling scenarios and describe poten-
tial extensions of the theory.

2 Relevant scales

Let us examine the relevant scales and dominant mech-
anisms of the suggested phenomenon. As mentioned
above, five physical mechanisms are at play (a) the
substrate’s elasticity, characterized by a shear modu-
lus G; (b) the sheet’s rigidity, characterized by a bend-
ing modulus B; (c) the substrate’s inertia, character-
ized by a three-dimensional (3D) mass density ρm; (d)
the sheet’s inertia, characterized by a 2D mass density
ρ = ρsh, where ρs is the sheet’s 3D mass density and h
its thickness; (e) in the case of a viscoelastic medium,
the substrate’s viscosity η.

Statically, the competition between the rigidities of
the sheet and supporting medium gives rise to an intrin-
sic length which determines the wavelength of static
wrinkles [1,2]. For a semi-infinite elastic substrate, the
competition between (a) and (b) above gives the intrin-
sic length as λc ∼ (B/G)1/3 [28]. In terms of the Young
moduli of the sheet and medium, Es and Em, it can
be rewritten as λc ∼ h(Es/Em)1/3. Thus, sheets that
are orders of magnitude stiffer than the medium are
required to obtain wrinkles with wavelength apprecia-
bly larger than h.

Dynamically, for a given length scale q−1, the bal-
ance between one of the restoring forces and one of
the inertial effects determines (by dimensional analy-
sis) a characteristic frequency. Each of these balances
gives the frequency–wavenumber relation for a limit-
ing resonance mechanism. Balancing (a) and (c) above
gives ωac ∼ (G/ρm)1/2q; this is the relation for Rayleigh
waves on the surface of a sheet-free medium [29]. The
combination of (b) and (c) gives ωbc ∼ (B/ρm)1/2q5/2.
Taking (a) and (d), we find ωad ∼ (G/ρ)1/2q1/2. Finally,
(b) and (d) give ωbd ∼ (B/ρ)1/2q2; this is the relation
for bending waves along a substrate-free sheet.

Assuming h � q−1 ∼ λc, one finds ωac ∼ ωbc �
ωad ∼ ωbd. This implies that the dominant inertial
effect usually comes from the substrate rather than the
sheet. Hence, although the theory formulated below
accounts for the inertia of both components, we will
subsequently concentrate on the limit of substrate-
dominated inertia. In this limit, we expect a crossover
in the relation between actuation frequency and actu-
ated wavenumber, around q ∼ λ−1

c , from ω ∼ ωac ∼ q
to ω ∼ ωbc ∼ q5/2.1

Thus, the frequency ωm ∼ (G/ρm)1/2/λc, obtained
from ωac or ωbc for q ∼ λ−1

c , sets the scale for the
actuation frequency required to excite wrinkles of wave-

1 The opposite limit, of sheet-dominated inertia, is analyzed
in the Supplementary Material [27]. In this limit, we expect

a crossover from ω ∼ ωbd ∼ q2 to ω ∼ ωad ∼ q1/2
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Fig. 1 Schematic view of the system

length ∼ λc. For G > 103 Pa and λc < 1 mm, we get
ωm > 103 Hz. Such frequencies probably lie outside the
range of natural scenarios but are experimentally rele-
vant.

In the case of a viscoelastic substrate, for the vis-
cous damping to be appreciable, we need η > G/ωm ∼
(Gρm)1/2λc. With the bounds above, this gives η >
1 Pa s, i.e., more than 103 times the viscosity of water.

These conclusions are borne out by the detailed anal-
ysis that follows.

3 Model

3.1 The system

We consider a thin elastic sheet attached to the sur-
face of a (visco)elastic medium. The sheet, lying at rest
on the z = 0 plane, is assumed to be incompressible,
infinite, and made of a much stiffer material than the
supporting medium. The medium occupies the region
z ∈ (−∞, 0). The sheet is compressed unidirection-
ally, along the x axis, by a time-dependent actuating
pressure (force per unit length) P (t). It can deform on
the xz plane from z = 0 to z = u(x, t). See Fig. 1.
We assume |∂xu| � 1 and construct the leading-order
(linear) model. Within this approximation, the exten-
sion from a one-dimensional surface deformation u(x, t)
to a two-dimensional one, u(x, y, t), is simple, and we
restrict the discussion to 1D for brevity.

3.2 Equations of motion

Both sheet and medium respond to the surface defor-
mation u(x, t). The sheet experiences a restoring nor-
mal force per unit area due to bending and the lateral
compression,

Fs(x, t) = −Bu′′′′ − P (t)u′′, (1)

where a prime denotes an x-derivative. We take the
actuating pressure to be

P (t) = P0 + P1 cos(ω1t), (2)

where P0 is the static pressure, P1 the actuation ampli-
tude, and ω1 the actuation frequency.
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The normal force per unit area which the medium
experiences at its surface is given by the general linear
response,

Fm(x, t) =
∫ t

−∞
dt′

∫ ∞

−∞
dx′K(x − x′, t − t′)u(x′, t′).

(3)

The kernel K(x, t) encodes the effect of the medium’s
spatial and temporal response on normal stresses at its
surface. In Fourier space,
K̃(q, ω) ≡ ∫ ∞

−∞ dt
∫ ∞

−∞ dxeiqx−iωtK(x, t) is a complex
function arising from the medium’s viscoelasticity and
inertia. We will assume a function of the form

K̃(q, ω) � K0(q) + iωK1(q) − ω2K2(q). (4)

The first and third terms are motivated by the sur-
face response of an elastic medium in both limits of low
and high frequency (see below). These time-reversible
responses relate to the elastic restoring force (first
term), and the substrate’s inertia (third term). The
second, time-irreversible term corresponds to the vis-
cous component of the response. We assume for sim-
plicity that, within the relevant frequency range, the
viscous coefficient K1 does not change with frequency
(i.e., the viscoelasticity is dominated by a single relax-
ation process with rate K0/K1). Note that Eq. (4) can
be obtained by expanding K̃ in a small range of fre-
quencies around any given frequency.

The equation of motion for the sheet’s deformation
is

ρü = Fs − Fm, (5)

where ρ ≡ ρsh is the sheet’s mass per unit area, and
a dot denotes a time derivative. Using Eqs. (1)–(5)
while applying a spatial Fourier transform, f̃(q, t) ≡∫ ∞

−∞ dxeiqxf(x, t), turns the equation of motion into

[ρ + K2(q)]¨̃u + K1(q) ˙̃u + [Bq4 − P (t)q2 + K0(q)]ũ = 0.

(6)

The transformation

ṽ ≡ ũe−[K1/(2(ρ+K2))]t (7)

eliminates the friction term, yielding

(ρ + K2)¨̃v + [Bq4 − P (t)q2 + K0 − K2
1/(4(ρ + K2))]ṽ = 0.

(8)

We rewrite Eq. (8) as

¨̃v + ω2
0 [1 + a cos((2ω0 + ε)t)]ṽ = 0, (9)

where

ω2
0(q) ≡ 1

ρ + K2

(
Bq4 − P0q

2 + K0 − K2
1

4(ρ + K2)

)
,

a(q) ≡ −P1q
2

ω2
0

,

ε(q) ≡ ω1 − 2ω0(q). (10)

The problem has been transformed into an analogous
chain of independent, parametrically actuated oscilla-
tors, with intrinsic frequencies ω0(q), actuation ampli-
tudes a(q), and detuning parameters ε(q). We see in
Eq. (10) that increasing the static pressure P0 weakens
the ‘spring constant’ ω2

0 . For the analogy to work, we
must have

ω2
0(q) > 0, (11)

and ‘oscillators’ (modes) q which do not satisfy it are
damped. Further, from the known solution to the clas-
sical problem of parametric resonance [26], we infer
the condition for instability (i.e., exponentially grow-
ing amplitude ũ(q, t)), to leading order in the actuation
a,

Γ 2(q) ≡ 1
4
a2ω2

0 − K2
1

(ρ + K2)2
> 0. (12)

This is the squared rate of amplitude growth. The
fastest growing mode qf is the one which maximizes
Γ (q). The allowed detuning for each ‘oscillator’ q, i.e.,
the actuation frequency range providing resonance, is
obtained from the inequality ε2(q) < Γ 2(q). To simplify
the discussion, we will assume perfect tuning,

ε = 0, ω1 = 2ω0(q). (13)

Thus, by “unstable band” we will refer simply to the set
of tuned ‘oscillators’ (i.e., range of q) for which Γ 2(q) >
0.

4 Results

4.1 Elastic substrate

The kernel K(x − x′, t − t′) gives the nonlocal time-
dependent force density, acting at a point on the
medium’s surface at a certain time, in response to a
normal surface displacement occurring elsewhere at a
different time. For a semi-infinite elastic medium, its
Fourier transform was calculated by Lamb [30],

K̃(q, ω) =
4G2|q|3
ρmω2

[(
1 − ρmω2

Gq2

)1/2

−
(

1 − ρmω2

2Gq2

)2
]

,

(14)
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where G is the medium’s shear modulus, and we assume
for simplicity an incompressible medium. In both limits
of low and high frequency, this expression reduces to the
form given by Eq. (4), with K1 = 0, and

ω � (G/ρm)1/2|q| : K0 = 2G|q|, K2 =
3ρm
2|q| ,

(15a)

ω � (G/ρm)1/2|q| : K0 = 4G|q|, K2 =
ρm
|q| .

(15b)

Thus, the limits of high and low frequency differ by just
numerical prefactors.2,3

The two regimes defined in Eq. (15) can be rewrit-
ten as ω/ωm � λcq and ω/ωm � λcq. In the present
problem, however, the frequency (of actuation) and the
(excited) wavenumber are inter-related. As we shall see
shortly, for ω � ωm we get λcq ∼ ω/ωm, and for
ω � ωm, λcq � ω/ωm; namely, the first limit never
strictly holds. Hence, we will assume the second limit
and use Eq. (15b). Since the two behaviors are essen-
tially the same up to constant prefactors, this choice
should not have a qualitative effect. We return to this
point in Sect. 5.

To make the expressions concise, we hereafter use B
as the unit of energy, (B/Ĝ)1/3 ∼ λc as the unit of
length, and (ρm/Ĝ)1/2(B/Ĝ)1/3 ∼ ω−1

m as the unit of
time. We choose to multiply G by a numerical prefactor,
Ĝ = 2G, such that the static wrinkle wavenumber will
turn out equal to 1. The rescaling allows us to set B =
Ĝ = ρm = 1. The 2D pressure is then measured in
units of B1/3Ĝ2/3. (In Sect. 5.1 we will rewrite the most
relevant expressions in dimensional form.)

Substituting Eq. (15b) in Eqs. (10) and (12) gives ω0

and Γ for the case of an elastic substrate, including the
inertia of both substrate and sheet. However, based on
the estimates in Sect. 2, and to simplify the results, we
hereafter neglect the sheet’s inertia. Setting ρ → 0 in
these equations gives

ω2
0(q) = q2(q3 − P0q + 2), (16)

Γ 2(q) =
P 2
1 q2

4(q3 − P0q + 2)
. (17)

Static wrinkling appears when ω0 = 0. This occurs at
the critical pressure and wavenumber

P0c = 3, qc = 1. (18)

For P0 < P0c, we have ω2
0(q) > 0 and Γ 2(q) > 0 for

all q regardless of P1. Thus, all wrinkling modes q are

2 Note that at intermediate frequencies this kernel describes
a more complex response, including imaginary (yet still
time-reversible) terms.
3 In the static limit (ω = 0), one recovers the result derived

from the Boussinesq problem [31], K̃(q, 0) = 2G|q|.

(a)

(b)

(c)

Fig. 2 Properties of the fastest-growing mode as a func-
tion of static pressure for an elastic substrate. a Wavenum-
ber (solid line). The dashed line shows a linear interpolation

between the analytically known wavenumbers qf(0) = 22/3

and qf(P0c) = 1. b Growth rate, diverging at P0c. For an
elastic substrate, it is proportional to the actuation pressure
P1. c Actuation frequency required to excite the fastest-
growing mode, vanishing at P0c. All parameters are nor-
malized (see text)

oscillatory and will resonate if excited by ω1 = 2ω0(q).
The resonance does not require the actuation amplitude
to exceed a finite threshold, P1c = 0; the growth rate
simply increases linearly with P1 (Eq. (17)). This is due
to the absence of damping (K1 = 0).

Maximizing Eq. (17) gives the fastest-growing mode
qf(P0) and its rate of amplitude growth Γf(P0, P1).
These functions are shown in Fig. 2a, b. Also shown, in
panel (c), is the actuation frequency ω1f(P0) required
to excite the fastest-growing mode, as obtained from
Eqs. (13) and (16). For P0 = 0 (uncompressed sheet),
we have qf = 22/3 � 1.59, Γf/P1 = 2−5/63−1/2 � 0.324,
and ω1f = 213/631/2 � 7.78. Thus, the fastest-growing
wavelength is smaller than that of the static wrinkles.
As the static pressure is increased, qf decreases (wave-
length increases), Γf/P1 increases, and ω1f decreases,
until, at P0 = P0c = 3, the wavelength converges to the
static one, ω1f vanishes, and Γf diverges.

The fastest-growing mode, however, is not the selected
resonant mode. The natural control parameters in
experiment are the static pressure, the actuation fre-
quency, and the actuation amplitude. Given P0, the
choice of ω1 selects a dynamic wrinkle wavenum-
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Fig. 3 Wrinkle wavenumber as a function of actuation fre-
quency for an elastic substrate. Different curves correspond
to different values of static pressure P0 (from right to left):

0, 1.5, P ∗
0 = 201/3, 2.93, and P0c = 3. Solid circles indi-

cate the fastest-growing mode for the corresponding pres-
sure. Dashed lines show the asymptotes given in Eq. (19).
For P0 > P ∗

0 , there are three solutions for q1, the largest of
which growing the fastest, implying a discontinuous jump
in the observed dominant wavenumber as ω1 is ramped up.
The empty circle marks the bifurcation point. All parame-
ters are normalized (see text)

ber, q1(ω1, P0), according to Eqs. (13) and (16). This
wavenumber is not equal to qf in general and is inde-
pendent of P1. Figure 3 shows the selected wavenumber
as a function of ω1 for several values of P0 between 0
and P0c. The figure shows also the asymptotes of q1 for
small and large ω1, which are both independent of P0,

q1(ω1, P0) �
{

2−3/2 ω1, ω1 � 1
(ω1/2)2/5, ω1 � 1.

(19)

The corresponding asymptotes for the rate of amplitude
growth are

Γ (ω1, P0, P1) �
{

(P1/8)ω1, ω1 � 1
P1(16ω1)−1/5, ω1 � 1.

(20)

The asymptotes in Eq. (19) confirm our earlier state-
ment, that q1 is never much smaller than ω1, in dimen-
sionless terms. Switching for a moment back to dimen-
sional parameters, the two asymptotes become q1 ∼
(ρm/G)1/2ω1 and q1 ∼ (ρm/B)1/5ω

2/5
1 , revealing the

different physical mechanisms in the two limits. At
low frequencies, the restoring mechanism is the sub-
strate’s elasticity, whereas at high frequencies it is the
sheet’s bending rigidity. This crossover was anticipated
in Sect. 2. Less expected is the finding that the change
between the two behaviors may be discontinuous, as we
shall see now.

At P0 = P ∗
0 = (20)1/3 � 2.71 and ω1 = ω∗

1 =
2(2/5)5/6 � 0.932, the selected wavenumber, which is at
this point q∗

1 = (2/5)1/3 � 0.737, bifurcates into three
(Fig. 3). The bifurcation entails anomalous dynamics.
At the bifurcation point, we have dω0/dq = 0, imply-
ing that an excitation with P ∗

0 and ω∗
1 at one edge

of the sheet will not propagate through the sheet. For
P0 > P ∗

0 and ω1 < ω∗
1 , we find from Eq. (17) that the

Fig. 4 Density plots of wrinkle growth rate as a function
of excitation amplitude and frequency for an elastic sub-
strate. The static pressure values are a P0 = 0 and b
P0 = P0c/2 = 3/2. The dashed lines show ω1f , the exci-
tation frequency that produces the fastest-growing mode
(which for an elastic substrate is independent of P1). All
parameters are normalized (see text).

largest of the three solutions for q1(ω1, P0) grows the
fastest. Thus, for P0 > P ∗

0 , as the excitation frequency
ω1 is gradually increased from 0, the selected wrinkle
wavenumber will undergo a discontinuous jump. For
increasingly larger static pressure P0, the jump occurs
at lower and lower frequencies (see Fig. 3), until, at
P0 = P0c, the system selects q1 = qc at zero frequency,
as it should. This is how the static-wrinkling limit is
reproduced from the dynamic one. Note that this entire
behavior is independent of P1; hence, the discontinuous
transition is present also for arbitrarily weak actuation.

Figure 4 presents 2D maps of the growth rate Γ as a
function of P1 and ω1 for P0 = 0 and P0 = P0c/2.

4.2 Viscoelastic substrate

For a viscoelastic medium, the response is general-
ized by replacing G with a frequency-dependent com-
plex shear modulus G̃(ω). (Recall that we have been
assuming an incompressible medium.) Applying the
single-relaxation approximation of Eq. (4), we gener-
alize Eq. (15b) above to

K0 = 4G|q|, K1 = 4η|q|, K2 = ρm/|q|, (21)

where G = Re(G̃) and η = Im(G̃)/ω are the substrate’s
‘store’ modulus and viscosity, respectively (ωη is the
‘loss’ modulus). We use the same units of energy, length,
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Fig. 5 Oscillatory and damped modes for a viscoelastic
substrate. At static pressures smaller than P0η(η) (solid
curve), all modes are oscillatory; at larger pressures, increas-
ingly more modes are damped. For η = 0 (elastic substrate),
all modes are oscillatory for any P0 < P0c = 3. All parame-
ters are normalized (see text)

and time as in Sect. 4.1, making B, Ĝ = 2G, and ρm
all equal to unity. The viscosity η is measured then in
units of ρ

1/2
m Ĝ1/6B1/3.

Substituting Eq. (21) in Eqs. (10) and (12) while
neglecting ρ, we obtain

ω2
0(q) = q2(q3 − 4η2q2 − P0q + 2), (22)

Γ 2(q) =
[

P 2
1

4(q3 − 4η2q2 − P0q + 2)
− 16η2q2

]
q2.

(23)

The viscous component leads to several essential
changes compared to the elastic case. First, for a given
η, P0 has to be smaller than some P0η(η) < P0c to have
all modes oscillatory (ω2

0 > 0). The limiting function
P0η(η) is shown in Fig. 5. As one approaches the static
wrinkling transition, increasingly more modes become
damped. For η > 2−7/631/2 � 0.772, P0η < 0, i.e.,
there are damped modes for any static pressure (unless
we ‘strengthen the springs’ by stretching the sheet with
P0 < 0).

As in the elastic case, fixing ω1 = 2ω0 selects
a mode, q1(ω1, P0, η), which does not depend on P1

(see Eq. (22)). Unlike the elastic case, the fastest-
growing mode qf(P0, P1, η), obtained by maximizing Γ
of Eq. (23), does depend on P1. Hence, the fastest-
growing mode does not belong in general to the set
of selected wavenumbers; one should tune P1 together
with ω1 to get q1 = qf (see Fig. 8 below). Figure 6a
shows the selected wavenumber as a function of ω1 for
several values of P0 between 0 and P0c. The asymp-
totes for small and large ω1 remain as in Eq. (19). Also
here, the solutions bifurcate above a certain static pres-
sure P ∗

0 , implying a discontinuous jump in the dominant
wrinkle wavenumber as ω1 is increased. The bifurcation
point depends now on η. (See the Supplementary Mate-
rial [27] for the functional dependence.) Figure 6b shows
the decrease of P ∗

0 with η. For sufficiently high viscos-
ity, η > 31/251/3/4 � 0.740, the change of wavenumber
with frequency is discontinuous for any P0. Finally, for
P0 > P0η > P ∗

0 a band of modes becomes damped (with

(a)

(b)

Fig. 6 Change of wrinkle wavenumber with actuation fre-
quency for a viscoelastic substrate. a Wavenumber as a func-
tion of frequency for a given viscosity, η = 0.2. Different
curves correspond to different values of static pressure P0

(from right to left): 0, P0c/2 = 3/2, P ∗
0 = 2.55, P0η = 2.84,

and P0c = 3. Dashed lines show the asymptotes given in
Eq. (19). For P0 > P ∗

0 , there are three solutions for q1, the
largest of the three growing the fastest, implying a discon-
tinuous jump in the observed dominant wavenumber as ω1

is ramped up. The empty circle marks the bifurcation point.
For P0 > P0η, a band of modes are damped (leftmost, brown
curve). b Decrease in the bifurcation pressure with viscosity.
All parameters are normalized (see text)

imaginary ω0) as manifested by the leftmost curve in
Fig. 6a.

Another important change brought about by vis-
cosity is that the oscillatory modes do not resonate
for every value of P1 and ω1. The expression for
the squared growth rate in Eq. (23) has the asymp-
totes (P 2

1 /8)q2 and −16η2q4, respectively, at small and
large q. Thus, for any finite P1 there are small-q res-
onant modes, but the unstable band has a cutoff at
some qmax(P0, P1, η). The reason why resonance should
require small wavenumber lies in the dependence of
inertia on q (cf. K2 in Eq. (21)). The larger the wave-
length, the thicker the layer of substrate which moves
with the sheet, and the larger its inertia. Figure 7
shows the dependence of the cutoff qmax, along with
the fastest-growing mode qf , on P1 for an uncompressed
sheet (P0 = 0) and a given viscosity. Equation (23) can
be rewritten as

Γ 2 =
(

P 2
1

ω2
1

− 16η2

)
q4. (24)

Hence, resonance requires crossing a threshold of actu-
ation amplitude, which is linear in the actuation fre-
quency,

P1 > P1c = 4ηω1. (25)
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Fig. 7 Unstable (resonant) band as a function of actua-
tion amplitude for an uncompressed sheet (P0 = 0) on a
viscoelastic substrate. The viscosity is η = 0.2. For q larger
than the cutoff qmax (solid line), the modes are stable (of
finite amplitude). Also shown is the fastest-growing mode
qf (dashed line). All parameters are normalized (see text)

Fig. 8 Density plot of wrinkle growth rate as a function
of actuation amplitude and frequency for an uncompressed
sheet (P0 = 0) on a viscoelastic substrate. The viscos-
ity is η = 0.2. The resonant band is bounded by a mini-
mum amplitude proportional to ω1. The dashed line shows
the excitation frequency that produces the fastest-growing
mode for each actuation amplitude. All parameters are nor-
malized (see text)

This is a consequence of the viscous damping. The
smaller the frequency, the weaker the actuation needed
to overcome the damping. The reason, once again, is
that a larger mass of substrate is involved in the motion
for small wavenumber (low frequency).

Figure 8 shows a 2D map of the growth rate Γ as
a function of the excitation parameters P1 and ω1 for
an uncompressed sheet (P0 = 0). Unlike the elastic-
substrate case (Fig. 4), here the resonant region is
bounded.

5 Discussion

5.1 Summary of experimental predictions

Let us summarize the results which seem most relevant
experimentally and give them in dimensional form. As
in the analysis above, we assume that the inertia is gov-

erned by the substrate. A similar discussion for the case
of sheet-dominated inertia is given in the Supplemen-
tary Material [27].

In the case of an elastic substrate, one can first com-
press the sheet until static wrinkling occurs. The mea-
sured critical pressure and static wrinkle wavenumber
are related to the bending modulus of the sheet and the
elastic modulus of the substrate as

P0c = 3B1/3G2/3, qc = (G/B)1/3, (26)

with known corrections for finite compressibility [28].
This allows a measurement of B and G.

For a finite P0 < P0c, and ramping up the actua-
tion frequency ω1 from zero, dynamic wrinkles should
form for any actuation amplitude. At low frequency
(ω1 � ωm ∼ (G/ρm)1/2/λc), the wrinkle wavenumber
q1 increases linearly with ω1,

q1 � (1/4)(ρm/G)1/2 ω1, (27a)

which is essentially the relation for Rayleigh sur-
face waves [29]. At high frequencies (ω1 � ωm), the
wavenumber increases as ω

2/5
1 ,

q1 � 0.758(ρm/B)1/5 ω
2/5
1 . (27b)

Concerning the dependence on sheet thickness, at low
frequencies the wrinkle wavenumber is independent of
h, and at high frequencies it decreases with h as ∼
h−3/5. These very different dependencies are related to
the different restoring mechanisms in the two regimes.
At low frequency, the substrate’s elasticity dominates,
and the resulting Rayleigh waves are independent of
the sheet. At high frequency, the dominant force comes
from the sheet’s bending rigidity, which depends on
thickness. The two dependencies are to be compared
with that of the static wrinkles, where qc ∼ h−1; see
Eq. (26).

Depending on the value of P0, two distinct behav-
iors are expected as ω1 is increased. At small pressures,
P0 < P ∗

0 , the selected wrinkle wavelength decreases
continuously with ω1. For larger pressures, P ∗

0 < P0 <
P0c, a discontinuous drop in the dominant wavelength
is expected as a function of ω1. The transition occurs at

P ∗
0 = 0.905P0c. (28)

The transition in the wrinkle wavelength is a particu-
larly distinctive prediction. We discuss its validity fur-
ther in Sect. 5.3 below.

The behavior in the case of a viscoelastic substrate is
qualitatively different. Thus, it might be used to obtain
information on the viscoelastic properties of the sup-
porting medium. The present theory is restricted, how-
ever, to the simple case where the viscoelastic response
is described sufficiently well by a single relaxation time,
τ = η/G, i.e., the complex modulus is given by G̃ =
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G+ iωη; cf. Sects. 3.2 and 4.2. The static measurement
of P0c and qc are as in the elastic case above.

To see dynamic wrinkles on a viscoelastic substrate,
one needs an excitation with pressure amplitude that
exceeds a threshold P1c. The threshold depends linearly
on the excitation frequency,

P1c = 3.17η(B/G)1/3 ω1 = 3.17ηλc ω1. (29)

where λc is the static wrinkle wavelength. Thus, the
threshold of resonance may be used as a probe of the
viscous component η. As in the elastic case, at low and
high excitation frequencies the asymptotic dependence
of the dynamic wrinkle wavenumber q1 on ω1 is given
in Eqs. (27). The remark concerning the dependence on
sheet thickness in the elastic case holds here as well.

In the viscoelastic case, too, the value of P0 separates
the behaviors when ramping up ω1 into two cases: a con-
tinuous decrease in wavelength for low pressure and a
discontinuous one at high pressure. The transition pres-
sure P ∗

0 decreases with viscosity (see Fig. 6b and the
Supplementary Material [27]), providing another probe
of η.

To get a feeling for the relevant scales, we consider a
specific system, motivated by the experimental system
of Ref. [4]. It is made of a 1-mm-thick stiffer elastomeric
sheet (Es ∼ 106 Pa), supported on a softer elastomeric
medium (Em ∼ 104 Pa). These properties fit also a layer
of skin covering a muscle tissue. The sheet’s bending
modulus is B ∼ 10−4 J. The resulting static wrinkle
wavenumber (Eq. (26)) is qc ∼ 1 mm−1. (This is at the
edge of the theory’s validity, which requires qh � 1;
thus, the following should be regarded only as quali-
tative orders of magnitude.) To excite dynamic wrin-
kles of a similar wavenumber, we need, according to
Eq. (27), an excitation frequency of order ω1 ∼ 104 s−1.
(We have taken ρm ∼ 103 kg/m3.) This is close to the
relevant lower frequency bound obtained in Sect. 1. As
already noted there, such frequencies are probably too
high to be produced naturally but readily attainable in
experiments.

To observe the viscous effects described in Sect. 4.2,
we need a normalized η of order 1. In dimensional terms,
it implies, for the example above, η � 1–10 Pa s (i.e.,
103–104 times the viscosity of water). This is in line
with the estimate in Sect. 2.

5.2 Comparison with other dynamic wrinkling
scenarios

As mentioned in Sect. 1, several works have addressed
the formation of dynamic wrinkles in thin sheets upon
time-varying external forcing, whose source may be, for
example, the impact of a rigid object, or an abrupt
change of pressure or confinement [18–24]. The main
feature that sets the system addressed here apart is the
periodic, single-frequency external forcing. Within our
linear theory, it implies the selection of a single, con-
stant wrinkle wavelength. For the non-periodic forcing
in the other scenarios, a time-increasing (coarsening)

wavelength has been observed (e.g., Ref. [20]). Unlike
the periodically excited system, the other systems
eventually approach equilibrium whereby the dynamic
wavelength must tend toward its static value.

In addition, parametric resonance has a different
mode-selection mechanism. The mode q1 is selected to
match the actuation frequency (such that 2ω0(q1) =
ω1). Thus, it is not equal to the fastest-growing mode
qf , which is the selected mode in the other scenar-
ios. One consequence concerns the dependence of the
selected mode on inertia. In the absence of damping, the
mode which maximizes the growth rate in our system
is independent of ρm. (See Eqs. (10) and (12) in which,
for K1 = 0, the mass density enters only in a prefac-
tor.) Similarly, the selected pattern in other dynamic-
buckling systems was found to be independent of iner-
tia (e.g., Ref. [24]). In the resonant system, the selected
mode q1 does not maximize the growth rate and thus
depends on ρm.

Nevertheless, there is a qualitative relation with the
time dependence of the selected mode in a supported
sheet under impact [20]. In Ref. [20], the selected wave-
length was found to increase with time according to
λ(t) ∼ (B/ρm)1/5 t2/5. This scaling is in line with our
q1(ω1) relation in the high-frequency limit, Eq. (27b).
It arises in both cases from the interplay of sheet bend-
ing and substrate inertia (see Sect. 2). Consistently
with this limit, the wavelength values measured in the
impact experiments were much smaller than λc. With
a compressed sheet on a (visco)elastic substrate, the
impact behavior at longer times (corresponding to our
low-frequency-large-wavelength limit, Eq. (27a)) might
reveal an instability or a two-wave pattern similar to
the one predicted above for q1(ω1).

5.3 Model extensions

We have assumed above that the inertia is governed by
the substrate. As estimated in Sect. 1, this is valid when
the wavelength is much larger than the sheet thickness.
When the two are not scale-separated, the sheet’s iner-
tia may be important. (In fact, this may be the case in
the numerical example given above.) The physical dif-
ference between the two limits is the fact that the effec-
tive 2D mass responsible for inertia in the substrate case
depends on wavelength (cf. K2 of Eq. (15)), whereas for
the sheet it is a constant. The combination of inertial
effects from both substrate and sheet can be treated
within our theory. One should return to the equations
of motion, Sect. 3.2 and consider the full inertial terms
with ρsh+K2(q) instead of just K2. The algebra is more
cumbersome but can be treated numerically.

The opposite limit, of sheet-dominated inertia, is pre-
sented in the Supplementary Material [27]. Although
this limit is of less practical relevance, it is instruc-
tive to see the qualitative changes brought about by
the sheet’s mass. These are as follows. (a) The fastest
growing wavelength for an uncompressed sheet (P0 = 0)
is arbitrarily small (whereas with substrate inertia it
is ∼ λc; see Fig. 2). Thus, a finite static pressure is
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required to get finite-size dynamic wrinkles. (b) The
selected wavenumber scales differently with actuation
frequency, as ω2

1 and ω
1/2
1 at low and high frequency,

respectively. (Compare to Eq. (19)) (c) As a result of
(b), the dependence of wrinkle wavenumber on sheet
thickness is different — increasing as h and decreasing
as h−1/2 for large and small ω1, respectively (compared
to h0 and h−3/5 with substrate inertia). Overall, how-
ever, the qualitative behaviors are quite similar. In par-
ticular, the phenomenon of continuous vs. discontinu-
ous change of selected wavelength with frequency exists
in both limits.

We have used the large-frequency asymptotic form of
the substrate’s kernel, Eq. (15b). The small-frequency
asymptote is the same up to numerical prefactors (see
Eq. (15)) and will lead to the same results. A more com-
plete theory should consider the full kernel, Eq. (14).
This would require a more complicated numerical anal-
ysis. One might be worried that our central prediction,
concerning the continuous vs. discontinuous behavior
of q1 as a function of ω1, is an artifact of the asymp-
totic kernel, as the phenomenon occurs at q1λc ∼ 1
(see Figs. 3 and 6). This is most probably not the
case. The transition is a result of the function ω2

0(P0, q)
becoming non-convex at sufficiently high pressure. It is
a generic property required to obtain the static wrin-
kling transition, ω2

0(P0c, qc) = 0, at a finite wavenum-
ber qc. Indeed, the case of sheet-dominated inertia [27],
where the much simpler kernel of a static elastic sub-
strate is fully treated, exhibits the same behavior.

The theory presented here is linear. As a result,
it provides the properties of the instability but not
the ultimate form of the sheet’s dynamic deformation.
Whether the deformation saturates to periodic wrin-
kles of finite height, develops multi-wavelength wrin-
kles [32], or localizes into deeper features (folds) [20,33],
should be checked in a future nonlinear theory or sim-
ulation.

We have assumed a semi-infinite substrate. Over
length scales comparable and larger than the substrate
thickness, the results will be modified. In the opposite
limit, of a thin substrate compared to the wrinkle wave-
length, the effect of the medium will turn into that of
a Winkler foundation [34], i.e., strongly localized (K̃
independent of q).

Another simplification employed here is the assump-
tion of a single relaxation time for the viscoelastic
medium. Actual viscoelastic media, particularly biolog-
ical ones, have a much richer frequency dependence,
which will affect the response to the parametric excita-
tion. Conversely, parametric resonance may be used to
tap into the medium’s rich temporal response based on
an extended theory.

Besides relaxation times, complex media have also
characteristic lengths which affect their response [35,
36]. The present theory describes a way to sam-
ple various length scales (wavenumbers) by sweeping
the parametric-excitation frequency. Recently, we have
derived the solution to the Boussinesq problem for a vis-
coelastic structured medium, accounting for its intrin-

sic correlation length [37]. Similar to the derivations
in Sects. 4.1 and 4.2, these results (once extended to
include inertia) may be used to address the paramet-
ric excitation of a sheet supported on such a structured
medium.

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-021-00085-y.
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